-
Notifications
You must be signed in to change notification settings - Fork 60
/
plot.py
86 lines (75 loc) · 2.58 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import logging
import numpy as np
from cluster import *
from sklearn import manifold
from plot_utils import *
def plot_rho_delta(rho, delta):
'''
Plot scatter diagram for rho-delta points
Args:
rho : rho list
delta : delta list
'''
logger.info("PLOT: rho-delta plot")
plot_scatter_diagram(0, rho[1:], delta[1:], x_label='rho', y_label='delta', title='Decision Graph')
plt.savefig('Decision Graph.jpg')
def plot_cluster(cluster):
'''
Plot scatter diagram for final points that using multi-dimensional scaling for data
Args:
cluster : DensityPeakCluster object
'''
logger.info("PLOT: cluster result, start multi-dimensional scaling")
dp = np.zeros((cluster.max_id, cluster.max_id), dtype = np.float32)
cls = []
for i in xrange(1, cluster.max_id):
for j in xrange(i + 1, cluster.max_id + 1):
dp[i - 1, j - 1] = cluster.distances[(i, j)]
dp[j - 1, i - 1] = cluster.distances[(i, j)]
cls.append(cluster.cluster[i])
cls.append(cluster.cluster[cluster.max_id])
cls = np.array(cls, dtype = np.float32)
fo = open(r'./tmp.txt', 'w')
fo.write('\n'.join(map(str, cls)))
fo.close()
#seed = np.random.RandomState(seed=3)
mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1,dissimilarity='precomputed')
dp_mds = mds.fit_transform(dp.astype(np.float64))
logger.info("PLOT: end mds, start plot")
plot_scatter_diagram(1, dp_mds[:, 0], dp_mds[:, 1], title='2D Nonclassical Multidimensional Scaling', style_list = cls)
plt.savefig("2D Nonclassical Multidimensional Scaling.jpg")
def plot_rhodelta_rho(rho, delta):
'''
Plot scatter diagram for rho*delta_rho points
Args:
rho : rho list
delta : delta list
'''
logger.info("PLOT: rho*delta_rho plot")
y=rho*delta
r_index=np.argsort(-y)
x=np.zeros(y.shape[0])
idx=0
for r in r_index:
x[r]=idx
idx+=1
plt.figure(2)
plt.clf()
plt.scatter(x,y)
plt.xlabel('sorted rho')
plt.ylabel('rho*delta')
plt.title("Decision Graph RhoDelta-Rho")
plt.show()
plt.savefig('Decision Graph RhoDelta-Rho.jpg')
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
dpcluster = DensityPeakCluster()
# dpcluster.local_density(load_paperdata, './example_distances.dat')
# plot_rho_delta(rho, delta) #plot to choose the threthold
rho, delta, nneigh = dpcluster.cluster(load_paperdata, './data/data_in_paper/example_distances.dat', 20, 0.1)
logger.info(str(len(dpcluster.ccenter)) + ' center as below')
for idx, center in dpcluster.ccenter.items():
logger.info('%d %f %f' %(idx, rho[center], delta[center]))
plot_cluster(dpcluster)