-
Notifications
You must be signed in to change notification settings - Fork 214
/
implode.c
674 lines (584 loc) · 25.7 KB
/
implode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*****************************************************************************/
/* implode.c Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* Implode function of PKWARE Data Compression library */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 11.04.03 1.00 Lad First version of implode.c */
/* 02.05.03 1.00 Lad Stress test done */
/* 22.04.10 1.01 Lad Documented */
/*****************************************************************************/
#include <assert.h>
#include <string.h>
#include <limits.h>
#include "pklib.h"
#if ((1200 < _MSC_VER) && (_MSC_VER < 1400))
#pragma optimize("", off) // Fucking Microsoft VS.NET 2003 compiler !!! (_MSC_VER=1310)
#endif
//-----------------------------------------------------------------------------
// Defines
#define MAX_REP_LENGTH 0x204 // The longest allowed repetition
//-----------------------------------------------------------------------------
// Macros
// Macro for calculating hash of the current byte pair.
// Note that most exact byte pair hash would be buffer[0] + buffer[1] << 0x08,
// but even this way gives nice indication of equal byte pairs, with significantly
// smaller size of the array that holds numbers of those hashes
#define BYTE_PAIR_HASH(buffer) ((buffer[0] * 4) + (buffer[1] * 5))
//-----------------------------------------------------------------------------
// Local functions
// Builds the "hash_to_index" table and "pair_hash_offsets" table.
// Every element of "hash_to_index" will contain lowest index to the
// "pair_hash_offsets" table, effectively giving offset of the first
// occurence of the given PAIR_HASH in the input data.
static void SortBuffer(TCmpStruct * pWork, unsigned char * buffer_begin, unsigned char * buffer_end)
{
unsigned short * phash_to_index;
unsigned char * buffer_ptr;
unsigned short total_sum = 0;
unsigned long byte_pair_hash; // Hash value of the byte pair
unsigned short byte_pair_offs; // Offset of the byte pair, relative to "work_buff"
// Zero the entire "phash_to_index" table
memset(pWork->phash_to_index, 0, sizeof(pWork->phash_to_index));
// Step 1: Count amount of each PAIR_HASH in the input buffer
// The table will look like this:
// offs 0x000: Number of occurences of PAIR_HASH 0
// offs 0x001: Number of occurences of PAIR_HASH 1
// ...
// offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 (the highest hash value)
for(buffer_ptr = buffer_begin; buffer_ptr < buffer_end; buffer_ptr++)
pWork->phash_to_index[BYTE_PAIR_HASH(buffer_ptr)]++;
// Step 2: Convert the table to the array of PAIR_HASH amounts.
// Each element contains count of PAIR_HASHes that is less or equal
// to element index
// The table will look like this:
// offs 0x000: Number of occurences of PAIR_HASH 0 or lower
// offs 0x001: Number of occurences of PAIR_HASH 1 or lower
// ...
// offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 or lower
for(phash_to_index = pWork->phash_to_index; phash_to_index < &pWork->phash_to_index_end; phash_to_index++)
{
total_sum = total_sum + phash_to_index[0];
phash_to_index[0] = total_sum;
}
// Step 3: Convert the table to the array of indexes.
// Now, each element contains index to the first occurence of given PAIR_HASH
for(buffer_end--; buffer_end >= buffer_begin; buffer_end--)
{
byte_pair_hash = BYTE_PAIR_HASH(buffer_end);
byte_pair_offs = (unsigned short)(buffer_end - pWork->work_buff);
pWork->phash_to_index[byte_pair_hash]--;
pWork->phash_offs[pWork->phash_to_index[byte_pair_hash]] = byte_pair_offs;
}
}
static void FlushBuf(TCmpStruct * pWork)
{
unsigned char save_ch1;
unsigned char save_ch2;
unsigned int size = 0x800;
pWork->write_buf(pWork->out_buff, &size, pWork->param);
save_ch1 = pWork->out_buff[0x800];
save_ch2 = pWork->out_buff[pWork->out_bytes];
pWork->out_bytes -= 0x800;
memset(pWork->out_buff, 0, sizeof(pWork->out_buff));
if(pWork->out_bytes != 0)
pWork->out_buff[0] = save_ch1;
if(pWork->out_bits != 0)
pWork->out_buff[pWork->out_bytes] = save_ch2;
}
static void OutputBits(TCmpStruct * pWork, unsigned int nbits, unsigned long bit_buff)
{
unsigned int out_bits;
// If more than 8 bits to output, do recursion
if(nbits > 8)
{
OutputBits(pWork, 8, bit_buff);
bit_buff >>= 8;
nbits -= 8;
}
// Add bits to the last out byte in out_buff;
out_bits = pWork->out_bits;
pWork->out_buff[pWork->out_bytes] |= (unsigned char)(bit_buff << out_bits);
pWork->out_bits += nbits;
// If 8 or more bits, increment number of bytes
if(pWork->out_bits > 8)
{
pWork->out_bytes++;
bit_buff >>= (8 - out_bits);
pWork->out_buff[pWork->out_bytes] = (unsigned char)bit_buff;
pWork->out_bits &= 7;
}
else
{
pWork->out_bits &= 7;
if(pWork->out_bits == 0)
pWork->out_bytes++;
}
// If there is enough compressed bytes, flush them
if(pWork->out_bytes >= 0x800)
FlushBuf(pWork);
}
// This function searches for a repetition
// (a previous occurence of the current byte sequence)
// Returns length of the repetition, and stores the backward distance
// to pWork structure.
static unsigned int FindRep(TCmpStruct * pWork, unsigned char * input_data)
{
unsigned short * phash_to_index; // Pointer into pWork->phash_to_index table
unsigned short * phash_offs; // Pointer to the table containing offsets of each PAIR_HASH
unsigned char * repetition_limit; // An eventual repetition must be at position below this pointer
unsigned char * prev_repetition; // Pointer to the previous occurence of the current PAIR_HASH
unsigned char * prev_rep_end; // End of the previous repetition
unsigned char * input_data_ptr;
unsigned short phash_offs_index; // Index to the table with PAIR_HASH positions
unsigned short min_phash_offs; // The lowest allowed hash offset
unsigned int offs_in_rep; // Offset within found repetition
unsigned int equal_byte_count; // Number of bytes that are equal to the previous occurence
unsigned int rep_length = 1; // Length of the found repetition
unsigned int rep_length2; // Secondary repetition
unsigned char pre_last_byte; // Last but one byte from a repetion
unsigned short di_val;
// Calculate the previous position of the PAIR_HASH
phash_to_index = pWork->phash_to_index + BYTE_PAIR_HASH(input_data);
min_phash_offs = (unsigned short)((input_data - pWork->work_buff) - pWork->dsize_bytes + 1);
phash_offs_index = phash_to_index[0];
// If the PAIR_HASH offset is below the limit, find a next one
phash_offs = pWork->phash_offs + phash_offs_index;
if(*phash_offs < min_phash_offs)
{
while(*phash_offs < min_phash_offs)
{
phash_offs_index++;
phash_offs++;
}
*phash_to_index = phash_offs_index;
}
// Get the first location of the PAIR_HASH,
// and thus the first eventual location of byte repetition
phash_offs = pWork->phash_offs + phash_offs_index;
prev_repetition = pWork->work_buff + phash_offs[0];
repetition_limit = input_data - 1;
// If the current PAIR_HASH was not encountered before,
// we haven't found a repetition.
if(prev_repetition >= repetition_limit)
return 0;
// We have found a match of a PAIR_HASH. Now we have to make sure
// that it is also a byte match, because PAIR_HASH is not unique.
// We compare the bytes and count the length of the repetition
input_data_ptr = input_data;
for(;;)
{
// If the first byte of the repetition and the so-far-last byte
// of the repetition are equal, we will compare the blocks.
if(*input_data_ptr == *prev_repetition && input_data_ptr[rep_length-1] == prev_repetition[rep_length-1])
{
// Skip the current byte
prev_repetition++;
input_data_ptr++;
equal_byte_count = 2;
// Now count how many more bytes are equal
while(equal_byte_count < MAX_REP_LENGTH)
{
prev_repetition++;
input_data_ptr++;
// Are the bytes different ?
if(*prev_repetition != *input_data_ptr)
break;
equal_byte_count++;
}
// If we found a repetition of at least the same length, take it.
// If there are multiple repetitions in the input buffer, this will
// make sure that we find the most recent one, which in turn allows
// us to store backward length in less amount of bits
input_data_ptr = input_data;
if(equal_byte_count >= rep_length)
{
// Calculate the backward distance of the repetition.
// Note that the distance is stored as decremented by 1
pWork->distance = (unsigned int)(input_data - prev_repetition + equal_byte_count - 1);
// Repetitions longer than 10 bytes will be stored in more bits,
// so they need a bit different handling
if((rep_length = equal_byte_count) > 10)
break;
}
}
// Move forward in the table of PAIR_HASH repetitions.
// There might be a more recent occurence of the same repetition.
phash_offs_index++;
phash_offs++;
prev_repetition = pWork->work_buff + phash_offs[0];
// If the next repetition is beyond the minimum allowed repetition, we are done.
if(prev_repetition >= repetition_limit)
{
// A repetition must have at least 2 bytes, otherwise it's not worth it
return (rep_length >= 2) ? rep_length : 0;
}
}
// If the repetition has max length of 0x204 bytes, we can't go any further
if(equal_byte_count == MAX_REP_LENGTH)
{
pWork->distance--;
return equal_byte_count;
}
// Check for possibility of a repetition that occurs at more recent position
phash_offs = pWork->phash_offs + phash_offs_index;
if(pWork->work_buff + phash_offs[1] >= repetition_limit)
return rep_length;
//
// The following part checks if there isn't a longer repetition at
// a latter offset, that would lead to better compression.
//
// Example of data that can trigger this optimization:
//
// "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEQQQQQQQQQQQQ"
// "XYZ"
// "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ";
//
// Description of data in this buffer
// [0x00] Single byte "E"
// [0x01] Single byte "E"
// [0x02] Repeat 0x1E bytes from [0x00]
// [0x20] Single byte "X"
// [0x21] Single byte "Y"
// [0x22] Single byte "Z"
// [0x23] 17 possible previous repetitions of length at least 0x10 bytes:
// - Repetition of 0x10 bytes from [0x00] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x10 bytes from [0x01] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x10 bytes from [0x02] "EEEEEEEEEEEEEEEE"
// ...
// - Repetition of 0x10 bytes from [0x0F] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x1C bytes from [0x10] "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ"
// The last repetition is the best one.
//
pWork->offs09BC[0] = USHRT_MAX;
pWork->offs09BC[1] = 0x0000;
di_val = 0;
// Note: I failed to figure out what does the table "offs09BC" mean.
// If anyone has an idea, let me know to zezula_at_volny_dot_cz
for(offs_in_rep = 1; offs_in_rep < rep_length; )
{
if(input_data[offs_in_rep] != input_data[di_val])
{
di_val = pWork->offs09BC[di_val];
if(di_val != USHRT_MAX)
continue;
}
pWork->offs09BC[++offs_in_rep] = ++di_val;
}
//
// Now go through all the repetitions from the first found one
// to the current input data, and check if any of them migh be
// a start of a greater sequence match.
//
prev_repetition = pWork->work_buff + phash_offs[0];
prev_rep_end = prev_repetition + rep_length;
rep_length2 = rep_length;
for(;;)
{
rep_length2 = pWork->offs09BC[rep_length2];
if(rep_length2 == USHRT_MAX)
rep_length2 = 0;
// Get the pointer to the previous repetition
phash_offs = pWork->phash_offs + phash_offs_index;
// Skip those repetitions that don't reach the end
// of the first found repetition
do
{
phash_offs++;
phash_offs_index++;
prev_repetition = pWork->work_buff + *phash_offs;
if(prev_repetition >= repetition_limit)
return rep_length;
}
while(prev_repetition + rep_length2 < prev_rep_end);
// Verify if the last but one byte from the repetition matches
// the last but one byte from the input data.
// If not, find a next repetition
pre_last_byte = input_data[rep_length - 2];
if(pre_last_byte == prev_repetition[rep_length - 2])
{
// If the new repetition reaches beyond the end
// of previously found repetition, reset the repetition length to zero.
if(prev_repetition + rep_length2 != prev_rep_end)
{
prev_rep_end = prev_repetition;
rep_length2 = 0;
}
}
else
{
phash_offs = pWork->phash_offs + phash_offs_index;
do
{
phash_offs++;
phash_offs_index++;
prev_repetition = pWork->work_buff + *phash_offs;
if(prev_repetition >= repetition_limit)
return rep_length;
}
while(prev_repetition[rep_length - 2] != pre_last_byte || prev_repetition[0] != input_data[0]);
// Reset the length of the repetition to 2 bytes only
prev_rep_end = prev_repetition + 2;
rep_length2 = 2;
}
// Find out how many more characters are equal to the first repetition.
while(*prev_rep_end == input_data[rep_length2])
{
if(++rep_length2 >= MAX_REP_LENGTH)
break;
prev_rep_end++;
}
// Is the newly found repetion at least as long as the previous one ?
if(rep_length2 >= rep_length)
{
// Calculate the distance of the new repetition
pWork->distance = (unsigned int)(input_data - prev_repetition - 1);
if((rep_length = rep_length2) == MAX_REP_LENGTH)
return rep_length;
// Update the additional elements in the "offs09BC" table
// to reflect new rep length
while(offs_in_rep < rep_length2)
{
if(input_data[offs_in_rep] != input_data[di_val])
{
di_val = pWork->offs09BC[di_val];
if(di_val != USHRT_MAX)
continue;
}
pWork->offs09BC[++offs_in_rep] = ++di_val;
}
}
}
}
static void WriteCmpData(TCmpStruct * pWork)
{
unsigned char * input_data_end; // Pointer to the end of the input data
unsigned char * input_data = pWork->work_buff + pWork->dsize_bytes + MAX_REP_LENGTH;
unsigned int input_data_ended = 0; // If 1, then all data from the input stream have been already loaded
unsigned int save_rep_length; // Saved length of current repetition
unsigned int save_distance = 0; // Saved distance of current repetition
unsigned int rep_length; // Length of the found repetition
unsigned int phase = 0; //
// Store the compression type and dictionary size
pWork->out_buff[0] = (char)pWork->ctype;
pWork->out_buff[1] = (char)pWork->dsize_bits;
pWork->out_bytes = 2;
// Reset output buffer to zero
memset(&pWork->out_buff[2], 0, sizeof(pWork->out_buff) - 2);
pWork->out_bits = 0;
while(input_data_ended == 0)
{
unsigned int bytes_to_load = 0x1000;
int total_loaded = 0;
int bytes_loaded;
// Load the bytes from the input stream, up to 0x1000 bytes
while(bytes_to_load != 0)
{
bytes_loaded = pWork->read_buf((char *)pWork->work_buff + pWork->dsize_bytes + MAX_REP_LENGTH + total_loaded,
&bytes_to_load,
pWork->param);
if(bytes_loaded == 0)
{
if(total_loaded == 0 && phase == 0)
goto __Exit;
input_data_ended = 1;
break;
}
else
{
bytes_to_load -= bytes_loaded;
total_loaded += bytes_loaded;
}
}
input_data_end = pWork->work_buff + pWork->dsize_bytes + total_loaded;
if(input_data_ended)
input_data_end += MAX_REP_LENGTH;
//
// Warning: The end of the buffer passed to "SortBuffer" is actually 2 bytes beyond
// valid data. It is questionable if this is actually a bug or not,
// but it might cause the compressed data output to be dependent on random bytes
// that are in the buffer.
// To prevent that, the calling application must always zero the compression
// buffer before passing it to "implode"
//
// Search the PAIR_HASHes of the loaded blocks. Also, include
// previously compressed data, if any.
switch(phase)
{
case 0:
SortBuffer(pWork, input_data, input_data_end + 1);
phase++;
if(pWork->dsize_bytes != 0x1000)
phase++;
break;
case 1:
SortBuffer(pWork, input_data - pWork->dsize_bytes + MAX_REP_LENGTH, input_data_end + 1);
phase++;
break;
default:
SortBuffer(pWork, input_data - pWork->dsize_bytes, input_data_end + 1);
break;
}
// Perform the compression of the current block
while(input_data < input_data_end)
{
// Find if the current byte sequence wasn't there before.
rep_length = FindRep(pWork, input_data);
while(rep_length != 0)
{
// If we found repetition of 2 bytes, that is 0x100 or fuhrter back,
// don't bother. Storing the distance of 0x100 bytes would actually
// take more space than storing the 2 bytes as-is.
if(rep_length == 2 && pWork->distance >= 0x100)
break;
// When we are at the end of the input data, we cannot allow
// the repetition to go past the end of the input data.
if(input_data_ended && input_data + rep_length > input_data_end)
{
// Shorten the repetition length so that it only covers valid data
rep_length = (unsigned long)(input_data_end - input_data);
if(rep_length < 2)
break;
// If we got repetition of 2 bytes, that is 0x100 or more backward, don't bother
if(rep_length == 2 && pWork->distance >= 0x100)
break;
goto __FlushRepetition;
}
if(rep_length >= 8 || input_data + 1 >= input_data_end)
goto __FlushRepetition;
// Try to find better repetition 1 byte later.
// Example: "ARROCKFORT" "AROCKFORT"
// When "input_data" points to the second string, FindRep
// returns the occurence of "AR". But there is longer repetition "ROCKFORT",
// beginning 1 byte after.
save_rep_length = rep_length;
save_distance = pWork->distance;
rep_length = FindRep(pWork, input_data + 1);
// Only use the new repetition if it's length is greater than the previous one
if(rep_length > save_rep_length)
{
// If the new repetition if only 1 byte better
// and the previous distance is less than 0x80 bytes, use the previous repetition
if(rep_length > save_rep_length + 1 || save_distance > 0x80)
{
// Flush one byte, so that input_data will point to the secondary repetition
OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]);
input_data++;
continue;
}
}
// Revert to the previous repetition
rep_length = save_rep_length;
pWork->distance = save_distance;
__FlushRepetition:
OutputBits(pWork, pWork->nChBits[rep_length + 0xFE], pWork->nChCodes[rep_length + 0xFE]);
if(rep_length == 2)
{
OutputBits(pWork, pWork->dist_bits[pWork->distance >> 2],
pWork->dist_codes[pWork->distance >> 2]);
OutputBits(pWork, 2, pWork->distance & 3);
}
else
{
OutputBits(pWork, pWork->dist_bits[pWork->distance >> pWork->dsize_bits],
pWork->dist_codes[pWork->distance >> pWork->dsize_bits]);
OutputBits(pWork, pWork->dsize_bits, pWork->dsize_mask & pWork->distance);
}
// Move the begin of the input data by the length of the repetition
input_data += rep_length;
goto _00402252;
}
// If there was no previous repetition for the current position in the input data,
// just output the 9-bit literal for the one character
OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]);
input_data++;
_00402252:;
}
if(input_data_ended == 0)
{
input_data -= 0x1000;
memmove(pWork->work_buff, pWork->work_buff + 0x1000, pWork->dsize_bytes + MAX_REP_LENGTH);
}
}
__Exit:
// Write the termination literal
OutputBits(pWork, pWork->nChBits[0x305], pWork->nChCodes[0x305]);
if(pWork->out_bits != 0)
pWork->out_bytes++;
pWork->write_buf(pWork->out_buff, &pWork->out_bytes, pWork->param);
return;
}
//-----------------------------------------------------------------------------
// Main imploding function
unsigned int PKEXPORT implode(
unsigned int (*read_buf)(char *buf, unsigned int *size, void *param),
void (*write_buf)(char *buf, unsigned int *size, void *param),
char *work_buf,
void *param,
unsigned int *type,
unsigned int *dsize)
{
TCmpStruct * pWork = (TCmpStruct *)work_buf;
unsigned int nCount;
unsigned int i;
int nCount2;
// Fill the work buffer information
pWork->read_buf = read_buf;
pWork->write_buf = write_buf;
pWork->dsize_bytes = *dsize;
pWork->ctype = *type;
pWork->param = param;
pWork->dsize_bits = 4;
pWork->dsize_mask = 0x0F;
// Test dictionary size
switch(*dsize)
{
case CMP_IMPLODE_DICT_SIZE3: // 0x1000 bytes
pWork->dsize_bits++;
pWork->dsize_mask |= 0x20;
// No break here !!!
case CMP_IMPLODE_DICT_SIZE2: // 0x800 bytes
pWork->dsize_bits++;
pWork->dsize_mask |= 0x10;
// No break here !!!
case CMP_IMPLODE_DICT_SIZE1: // 0x400
break;
default:
return CMP_INVALID_DICTSIZE;
}
// Test the compression type
switch(*type)
{
case CMP_BINARY: // We will compress data with binary compression type
for(nCount = 0; nCount < 0x100; nCount++)
{
pWork->nChBits[nCount] = 9;
pWork->nChCodes[nCount] = nCount * 2;
}
break;
case CMP_ASCII: // We will compress data with ASCII compression type
for(nCount = 0; nCount < 0x100; nCount++)
{
pWork->nChBits[nCount] = (unsigned char )(ChBitsAsc[nCount] + 1);
pWork->nChCodes[nCount] = (unsigned short)(ChCodeAsc[nCount] * 2);
}
break;
default:
return CMP_INVALID_MODE;
}
for(i = 0; i < 0x10; i++)
{
for(nCount2 = 0; nCount2 < (1 << ExLenBits[i]); nCount2++)
{
pWork->nChBits[nCount] = (unsigned char)(ExLenBits[i] + LenBits[i] + 1);
pWork->nChCodes[nCount] = (unsigned short)((nCount2 << (LenBits[i] + 1)) | ((LenCode[i] & 0xFFFF00FF) * 2) | 1);
nCount++;
}
}
// Copy the distance codes and distance bits and perform the compression
memcpy(&pWork->dist_codes, DistCode, sizeof(DistCode));
memcpy(&pWork->dist_bits, DistBits, sizeof(DistBits));
WriteCmpData(pWork);
return CMP_NO_ERROR;
}