-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pytorch.py
122 lines (94 loc) · 4.02 KB
/
train_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
from typing import Callable
import numpy as np
import cv2
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST
from ignite.engine import create_supervised_trainer, create_supervised_evaluator, Events, Engine
from ignite.metrics import Loss
def build_cnn_autoencoder() -> nn.Module:
N = 16
kwargs = {"kernel_size": 3, "stride": 1, "padding": 1, "bias": False}
return nn.Sequential(
nn.Conv2d(1, N, **kwargs),
nn.BatchNorm2d(N),
nn.ReLU(),
nn.Conv2d(N, N*2, **kwargs),
nn.BatchNorm2d(N*2),
nn.ReLU(),
nn.Conv2d(N*2, N*4, **kwargs),
nn.BatchNorm2d(N*4),
nn.ReLU(),
nn.Conv2d(N * 4, 1, kernel_size=3, stride=1, padding=1, bias=True),
nn.Sigmoid()
)
class SuperresolutionDataset(Dataset):
# 低画質画像とオリジナル画像のペアにしたデータセット
def __init__(self, train: bool = True):
# MNISTデータセットの取得
self.mnist = MNIST(root=".", download=True, train=train,
transform=lambda x: np.asarray(x, dtype=np.float32) / 255)
def __len__(self) -> int:
return len(self.mnist)
def __getitem__(self, i) -> tuple[np.ndarray, np.ndarray]:
img_orig: np.ndarray
img_orig, _ = self.mnist[i]
# 入力画像を作成する
# 10x10に縮小してからもとのサイズに拡大して低画質化
img_lowres = cv2.resize(img_orig, (10, 10))
img_lowres = cv2.resize(img_lowres, (28, 28))
img_orig = np.expand_dims(img_orig, 0)
img_lowres = np.expand_dims(img_lowres, 0)
return img_lowres, img_orig
def evaluate(evaluator: Engine, val_loader: DataLoader) -> Callable[[Engine], None]:
def _evaluate(engine: Engine):
evaluator.run(val_loader)
print(
f"epoch {engine.state.epoch:d}, mse_loss: {evaluator.state.metrics['mse_loss']:f}")
return _evaluate
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-e", type=int, default=5, help="epoch")
parser.add_argument("-g", type=int, default=-1,
help="GPU ID (negative value indicates CPU mode)")
args = parser.parse_args()
if args.g >= 0 and torch.cuda.is_available():
device = torch.device(f"cuda:{args.g:d}")
print(f"GPU mode: {args.g:d}")
else:
device = torch.device("cpu")
print("CPU mode")
train_dataset = SuperresolutionDataset(train=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_dataset = SuperresolutionDataset(train=False)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
model = build_cnn_autoencoder().to(device)
opt = torch.optim.Adam(model.parameters())
trainer = create_supervised_trainer(model, opt, F.mse_loss, device=device)
metrics = {"mse_loss": Loss(F.mse_loss)}
evaluator = create_supervised_evaluator(model, metrics, device=device)
trainer.add_event_handler(Events.EPOCH_COMPLETED,
evaluate(evaluator, val_loader))
trainer.run(train_loader, max_epochs=args.e)
# 学習終了後に実際にテスト画像を高解像度化してみる
model.eval()
n_samples = 10
indices = np.random.choice(len(val_dataset), size=n_samples, replace=False)
test_inputs = np.stack([val_dataset[i][0] for i in indices])
test_inputs = torch.from_numpy(test_inputs).to(device)
with torch.no_grad():
outputs: Tensor = model(test_inputs)
outputs = outputs.cpu() * 255
outputs = outputs.squeeze().numpy()
test_inputs = test_inputs.cpu() * 255
test_inputs = test_inputs.squeeze().numpy()
# 入出力を左右に並べて出力
output_images = np.concatenate(
[test_inputs, outputs], axis=2).astype(np.uint8)
for i, img in enumerate(output_images):
cv2.imwrite(f"test_img_{i:02d}.png", img)
if __name__ == "__main__":
main()