-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathgsn_sample.m
158 lines (129 loc) · 3.54 KB
/
gsn_sample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
% gsn_sample - one-step sampling with GSN
% Copyright (C) 2013 KyungHyun Cho
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
function [X, occupied] = gsn_sample(G, X, occupied, meanfield)
if nargin < 4
meanfield = 0;
end
mb_sz = size(X{1}, 1);
if G.data.binary == 0 && G.noise.level > 0
X{1} = X{1} + G.noise.level * randn(size(X{1}));
end
if G.noise.drop > 0
mask = binornd(1, 1 - G.noise.drop, size(X{1}));
if G.data.binary
sandp = binornd(1, 0.5, size(X{1}));
else
sandp = zeros(size(X{1}));
end
X{1} = X{1} .* mask + (1 - mask) .* sandp;
clear mask;
end
for l = 1:G.structure.n_layers
if mod(l, 2) == 1
continue;
end
check = 0;
if l > 1 && occupied(l-1)
check = check + 1;
end
if l < G.structure.n_layers && occupied(l+1)
check = check + 1;
end
if check == 0;
continue;
end
% odd-numbered hidden layers
X{l} = 0 * X{l};
occupied(l) = 1;
if l < G.structure.n_layers && occupied(l+1)
X{l} = X{l} + X{l+1} * G.W{l}';
end
if l > 1 && occupied(l-1)
X{l} = X{l} + X{l-1} * G.W{l-1};
end
X{l} = bsxfun(@plus, X{l}, G.biases{l}');
if ~meanfield
if l > 1
if G.hidden.add_noise(l)
X{l} = X{l} + G.hidden.noise_level * randn(mb_sz, G.structure.layers(l));
end
end
end
if l > 1
X{l} = sigmoid(X{l}, G.hidden.use_tanh);
else
% visible layer
if G.data.binary
X{l} = sigmoid(X{l});
end
end
if ~meanfield
if l > 1
if G.hidden.add_noise(l)
X{l} = X{l} + G.hidden.noise_level * randn(mb_sz, G.structure.layers(l));
end
end
end
end
for l = 1:G.structure.n_layers
if mod(l, 2) == 0
continue;
end
check = 0;
if l > 1 && occupied(l-1)
check = check + 1;
end
if l < G.structure.n_layers && occupied(l+1)
check = check + 1;
end
if check == 0;
continue;
end
% even-numbered hidden layers
X{l} = 0 * X{l};
if l < G.structure.n_layers && occupied(l+1)
X{l} = X{l} + X{l+1} * G.W{l}';
end
if l > 1 && occupied(l-1)
X{l} = X{l} + X{l-1} * G.W{l-1};
end
occupied(l) = 1;
X{l} = bsxfun(@plus, X{l}, G.biases{l}');
if ~meanfield
if l > 1
if G.hidden.add_noise(l)
X{l} = X{l} + G.hidden.noise_level * randn(mb_sz, G.structure.layers(l));
end
end
end
if l > 1
X{l} = sigmoid(X{l}, G.hidden.use_tanh);
else
% visible layer
if G.data.binary
X{l} = sigmoid(X{l});
end
end
if ~meanfield
if l > 1
if G.hidden.add_noise(l)
X{l} = X{l} + G.hidden.noise_level * randn(mb_sz, G.structure.layers(l));
end
end
end
end