-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathdefault_sdae.m
120 lines (104 loc) · 3.56 KB
/
default_sdae.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
% default_dbm -
% Copyright (C) 2011 KyungHyun Cho, Tapani Raiko, Alexander Ilin
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
function [S] = default_sdae (layers)
% data type
S.data.binary = 1;
%S.data.binary = 0; % for GDBM
% bottleneck layer
S.bottleneck.binary = 1;
%S.bottleneck.binary = 0;
% nonlinearity: the name of the variable will change in the later revision
% 0 - sigmoid
% 1 - tanh
% 2 - relu
S.hidden.use_tanh = 0;
% learning parameters
S.learning.lrate = 1e-3;
S.learning.lrate0 = 5000;
S.learning.momentum = 0;
S.learning.weight_decay = 0;
S.learning.minibatch_sz = 100;
S.learning.lrate_anneal = 0.9;
S.valid_min_epochs = 10;
S.do_normalize = 1;
S.do_normalize_std = 1;
% stopping criterion
% if you happen to know some other criteria, please, do add them.
% if the criterion is zero, it won't stop unless the whole training epochs were consumed.
S.stop.criterion = 0;
% criterion == 1
S.stop.recon_error.tolerate_count = 1000;
% denoising
S.noise.drop = 0.1;
S.noise.level = 0.1;
% structure
n_layers = length(layers);
S.structure.layers = layers;
% initializations
S.W = cell(n_layers, 1);
S.biases = cell(n_layers, 1);
for l = 1:n_layers
S.biases{l} = zeros(layers(l), 1);
if l < n_layers
%S.W{l} = 1/sqrt(layers(l)+layers(l+1)) * randn(layers(l), layers(l+1));
S.W{l} = 2 * sqrt(6)/sqrt(layers(l)+layers(l+1)) * (rand(layers(l), layers(l+1)) - 0.5);
end
end
% adagrad
S.adagrad.use = 0;
S.adagrad.epsilon = 1e-8;
S.adagrad.W = cell(n_layers, 1);
S.adagrad.biases = cell(n_layers, 1);
for l = 1:n_layers
S.adagrad.biases{l} = zeros(layers(l), 1);
if l < n_layers
S.adagrad.W{l} = zeros(layers(l), layers(l+1));
end
end
S.adadelta.use = 0;
S.adadelta.momentum = 0.99;
S.adadelta.epsilon = 1e-6;
S.adadelta.gW = cell(n_layers, 1);
S.adadelta.gbiases = cell(n_layers, 1);
S.adadelta.W = cell(n_layers, 1);
S.adadelta.biases = cell(n_layers, 1);
for l = 1:n_layers
S.adadelta.gbiases{l} = zeros(layers(l), 1);
S.adadelta.biases{l} = zeros(layers(l), 1);
if l < n_layers
S.adadelta.gW{l} = zeros(layers(l), layers(l+1));
S.adadelta.W{l} = zeros(layers(l), layers(l+1));
end
end
% iteration
S.iteration.n_epochs = 100;
S.iteration.n_updates = 0;
% learning signals
S.signals.recon_errors = [];
S.signals.valid_errors = [];
S.signals.lrates = [];
S.signals.n_epochs = 0;
% debug
S.verbose = 0;
S.debug.do_display = 0;
S.debug.display_interval = 10;
S.debug.display_fid = 1;
S.debug.display_function = @visualize_dae;
% hook
S.hook.per_epoch = {@save_intermediate, {'sdae.mat'}};
S.hook.per_update = {@print_n_updates, {}};