@@ -13,17 +13,6 @@ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1, no
13
13
def forward (self , x ):
14
14
return self .bn (self .conv (x ))
15
15
16
-
17
- class ConvBn (nn .Module ):
18
- def __init__ (self , in_channels , out_channels , kernel_size = 3 , stride = 1 , pad = 1 , norm_act = InPlaceABN ):
19
- super (ConvBn , self ).__init__ ()
20
- self .conv = nn .Conv2d (in_channels , out_channels , kernel_size , stride = stride , padding = pad , bias = False )
21
- self .bn = norm_act (out_channels , activation = 'identity' )
22
-
23
- def forward (self , x ):
24
- return self .bn (self .conv (x ))
25
-
26
-
27
16
class ConvBnReLU3D (nn .Module ):
28
17
def __init__ (self , in_channels , out_channels , kernel_size = 3 , stride = 1 , pad = 1 , norm_act = InPlaceABN ):
29
18
super (ConvBnReLU3D , self ).__init__ ()
@@ -33,16 +22,6 @@ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1, no
33
22
def forward (self , x ):
34
23
return self .bn (self .conv (x ))
35
24
36
-
37
- class ConvBn3D (nn .Module ):
38
- def __init__ (self , in_channels , out_channels , kernel_size = 3 , stride = 1 , pad = 1 , norm_act = InPlaceABN ):
39
- super (ConvBn3D , self ).__init__ ()
40
- self .conv = nn .Conv3d (in_channels , out_channels , kernel_size , stride = stride , padding = pad , bias = False )
41
- self .bn = norm_act (out_channels , activation = 'identity' )
42
-
43
- def forward (self , x ):
44
- return self .bn (self .conv (x ))
45
-
46
25
def homo_warp (src_feat , src_proj , ref_proj_inv , depth_values ):
47
26
# src_feat: (B, C, H, W)
48
27
# src_proj: (B, 4, 4)
0 commit comments