-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathproject1.py
34 lines (27 loc) · 1.15 KB
/
project1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import pandas as pd
import numpy
from numpy import vectorize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
sample_files = [doc for doc in os.listdir() if doc.endswith('.txt')]
sample_contents = [open(File).read() for File in sample_files]
vectorize = lambda Text: TfidfVectorizer().fit_transform(Text).toarray()
similarity = lambda doc1, doc2: cosine_similarity([doc1, doc2])
vectors = vectorize(sample_contents)
s_vectors = list(zip(sample_files, vectors))
def check_plagiarism():
results = set()
global s_vectors
for sample_a, text_vector_a in s_vectors:
new_vectors = s_vectors.copy()
current_index = new_vectors.index((sample_a, text_vector_a))
del new_vectors[current_index]
for sample_b, text_vector_b in new_vectors:
sim_score = similarity(text_vector_a, text_vector_b)[0][1]
sample_pair = sorted((sample_a, sample_b))
score = sample_pair[0], sample_pair[1], sim_score
results.add(score)
return results
for data in check_plagiarism():
print(data)