-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
228 lines (181 loc) · 8.04 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import math
import time
import numpy as np
import torch
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils.cuda import get_current_device
from torch.distributed import all_reduce
from tqdm import tqdm
from utils import get_args, get_config, get_tflops, print_log
model_mem = None
def aggregate_ddp_results(*vals):
tensor = torch.as_tensor(vals, device=get_current_device())
all_reduce(tensor, group=gpc.get_group(ParallelMode.DATA))
return tuple(tensor.tolist())
def _train(epoch, train_dataloader, model, criterion, optimizer, lr_scheduler):
config = get_config()
rank = gpc.get_global_rank()
world_size = gpc.get_world_size(ParallelMode.DATA)
fp16 = 'fp16' in config
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
model.train()
num_steps = len(train_dataloader)
accum_size = config.get('gradient_accumulation', 1)
global_batch_size = config['hyperparameter']['batch_size'] * accum_size * world_size
seq_length = config['model']['seq_length']
num_steps = num_steps // accum_size
if 'steps_per_epoch' in config['hyperparameter']:
num_steps = config['hyperparameter']['steps_per_epoch']
progress = range(num_steps)
if rank == 0:
progress = tqdm(progress, desc=f"[Epoch {epoch} / Train]")
train_loss = list()
num_tokens = list()
data_iter = iter(train_dataloader)
used_time = list()
for _ in progress:
data_time = 0.
fwd_time = 0.
bwd_time = 0.
opt_time = 0.
batch_tokens = 0
for _ in range(accum_size):
data_start = time.time()
batch = next(data_iter)
for k, v in batch.items():
batch[k] = v.cuda()
labels = batch.pop('labels')
batch_tokens += labels.numel()
data_end = time.time()
fwd_start = data_end
outputs = model(**batch)
loss = criterion(outputs, labels)
train_loss.append(loss.item())
fwd_end = time.time()
bwd_start = fwd_end
optimizer.backward(loss)
torch.cuda.synchronize()
bwd_end = time.time()
opt_start = bwd_end
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
torch.cuda.synchronize()
opt_end = time.time()
data_time += data_end - data_start
fwd_time += fwd_end - fwd_start
bwd_time += bwd_end - bwd_start
opt_time += opt_end - opt_start
batch_time = data_time + fwd_time + bwd_time + opt_time
used_time.append(batch_time)
num_tokens.append(batch_tokens)
if rank == 0:
states = dict(loss=loss.item(),
lr=lr_scheduler.get_last_lr()[0],
time_dataloader=data_time,
time_forward=fwd_time,
time_backward=bwd_time,
time_optimizer=opt_time,
throughput=global_batch_size / batch_time,
tflops=get_tflops(batch_time))
if fp16:
states['scale'] = optimizer.optim.optim.loss_scale.item()
progress.set_postfix(**states)
used_time = np.sum(used_time[1:])
peak_mem = torch.cuda.max_memory_allocated()
state_mem = torch.cuda.memory_allocated() - model_mem
activation_mem = peak_mem - state_mem - model_mem
train_loss = np.sum(train_loss)
num_tokens = np.sum(num_tokens[1:])
train_loss, num_tokens = aggregate_ddp_results(train_loss, num_tokens)
msg = f'[Epoch {epoch} / Train]: Loss = {train_loss / (world_size * num_steps * accum_size):.3f}'
msg += f' | Throughput = {num_tokens / used_time:.3f} tokens/sec ({num_tokens / (used_time * seq_length):.3f} samples/sec)'
msg += f' | TFLOPS = {get_tflops(used_time / (num_steps - 1)):.3f}'
msg += f"\n[Epoch {epoch} / Train]: Peak memory = {peak_mem / 1024**3:.3f} GB"
msg += f" | Model memory = {model_mem / 1024**3:.3f} GB."
msg += f" | Optimizer state memory = {state_mem / 1024**3:.3f} GB."
msg += f" | Activation memory = {activation_mem / 1024**3:.3f} GB."
print_log(msg)
def _test(test_dataloader, model, criterion):
config = get_config()
rank = gpc.get_global_rank()
world_size = gpc.get_world_size(ParallelMode.DATA)
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
model.eval()
num_steps = len(test_dataloader)
accum_size = config.get('gradient_accumulation', 1)
global_batch_size = config['hyperparameter']['batch_size'] * accum_size * world_size
seq_length = config['model']['seq_length']
num_steps = num_steps // accum_size
if 'test_steps' in config['hyperparameter']:
num_steps = config['hyperparameter']['test_steps']
progress = range(num_steps)
if rank == 0:
progress = tqdm(progress, desc="[Test]")
test_loss = list()
num_tokens = list()
data_time = 0.
fwd_time = 0.
data_iter = iter(test_dataloader)
used_time = list()
with torch.no_grad():
for _ in progress:
data_time = 0.
fwd_time = 0.
batch_tokens = 0
for _ in range(accum_size):
data_start = time.time()
batch = next(data_iter)
for k, v in batch.items():
batch[k] = v.cuda()
labels = batch.pop('labels')
batch_tokens += labels.numel()
data_end = time.time()
fwd_start = data_end
outputs = model(**batch)
loss = criterion(outputs, labels)
test_loss.append(loss.item())
torch.cuda.synchronize()
fwd_end = time.time()
data_time += data_end - data_start
fwd_time += fwd_end - fwd_start
batch_time = data_time + fwd_time
used_time.append(batch_time)
num_tokens.append(batch_tokens)
if rank == 0:
progress.set_postfix(loss=loss.item(),
ppl=math.exp(loss.item()),
time_dataloader=data_time,
time_forward=fwd_time,
throughput=global_batch_size / batch_time,
tflops=get_tflops(batch_time))
used_time = np.sum(used_time[1:])
peak_mem = torch.cuda.max_memory_allocated()
activation_mem = peak_mem - model_mem
test_loss = np.sum(test_loss)
num_tokens = np.sum(num_tokens[1:])
test_loss, num_tokens = aggregate_ddp_results(test_loss, num_tokens)
msg = f'[Test]: Loss = {test_loss / (world_size * num_steps * accum_size):.3f}'
msg += f' | Perplexity = {math.exp(test_loss / (world_size * num_steps * accum_size)):.3f}'
msg += f' | Throughput = {num_tokens / used_time:.3f} tokens/sec ({num_tokens / (used_time * seq_length):.3f} samples/sec)'
msg += f' | TFLOPS = {get_tflops(used_time / (num_steps - 1)):.3f}'
msg += f"\n[Test]: Peak memory = {peak_mem / 1024**3:.3f} GB"
msg += f" | Model memory = {model_mem / 1024**3:.3f} GB."
msg += f" | Activation memory = {activation_mem / 1024**3:.3f} GB."
print_log(msg)
def train(model, train_data, test_data, criterion, optimizer, lr_scheduler):
args = get_args()
config = get_config()
global model_mem
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
model_mem = torch.cuda.memory_allocated()
print_log('Benchmark start.')
for epoch in range(config['hyperparameter']['num_epochs']):
_train(epoch, train_data, model, criterion, optimizer, lr_scheduler)
if args.do_eval:
_test(test_data, model, criterion)
print_log('Benchmark complete.')