forked from lilly1987/ComfyUI_node_Lilly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleSampler.py
187 lines (160 loc) · 5.98 KB
/
SimpleSampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import comfy.samplers
import comfy.sd
import comfy.utils
#import comfy_extras.clip_vision
import model_management
import importlib
import folder_paths
import torch
import os
import sys
import json
import hashlib
import copy
import traceback
from PIL import Image
from nodes import common_ksampler
from PIL.PngImagePlugin import PngInfo
import numpy as np
#print(f"SimpleSampler __name__ {__name__}")
#print(f"SimpleSampler __file__ {os.path.splitext(os.path.basename(__file__))[0]}")
import os
if __name__ == os.path.splitext(os.path.basename(__file__))[0] or __name__ =='__main__':
from ConsoleColor import print, console
from wildcards import wildcards
else:
from .ConsoleColor import print, console
from .wildcards import wildcards
#print(__file__)
#print(os.path.basename(__file__))
#----------------------------
wildcardsOn=True
# wildcards support check
#wildcardsOn=False
#try:
# wildcardsOn=True
# #wildcards.card_path=os.path.dirname(__file__)+"\\..\\wildcards\\**\\*.txt"
# print(f"import wildcards succ", style="bold GREEN" )
#except:
# print(f"import wildcards fail", style="bold RED")
# wildcardsOn=False
# err_msg = traceback.format_exc()
# print(err_msg)
def encode(clip, text):
if wildcardsOn:
text=wildcards.run(text)
return [[clip.encode(text), {}]]
def generate(width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return {"samples":latent}
# RETURN_TYPES = ("LATENT",)
def decode(vae, samples):
return vae.decode(samples["samples"])
# RETURN_TYPES = ("IMAGE",)
def sample(
model, seed, steps, cfg, sampler_name, scheduler,
clip,
vae,
positive, negative,
#latent_image,
width, height, denoise=1.0, batch_size=1
):
samples=common_ksampler(
model, seed, steps, cfg, sampler_name, scheduler,
#positive,
encode(clip, positive),
#negative,
encode(clip, negative),
#latent_image,
generate( width, height, batch_size=1),
denoise=denoise)[0]
return (decode(vae,samples),)
def load_vae(vae_name):
vae_path = folder_paths.get_full_path("vae", vae_name)
vae = comfy.sd.VAE(ckpt_path=vae_path)
return vae
#----------------------------
class SimpleSampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": ("MODEL",),
#"positive": ("CONDITIONING", ),
"clip": ("CLIP", ),
"vae": ("VAE", ),
"positive": ("STRING", {"multiline": True}),
#"negative": ("CONDITIONING", ),
"negative": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
#"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
#RETURN_TYPES = ("LATENT",)
FUNCTION = "simple"
CATEGORY = "sampling"
def simple(self,
model, seed, steps, cfg, sampler_name, scheduler,
clip,
vae,
positive, negative,
width, height, denoise=1.0, batch_size=1
):
return sample(
model, seed, steps, cfg, sampler_name, scheduler,
clip,
vae,
positive, negative,
width, height, denoise, batch_size
)
#----------------------------
class SimpleSamplerVAE:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": ("MODEL",),
#"positive": ("CONDITIONING", ),
"clip": ("CLIP", ),
#"vae": ("VAE", ),
"vae_name": (folder_paths.get_filename_list("vae"), ),
"positive": ("STRING", {"multiline": True}),
#"negative": ("CONDITIONING", ),
"negative": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
#"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
#RETURN_TYPES = ("LATENT",)
FUNCTION = "simple"
CATEGORY = "sampling"
def simple(self,
model, seed, steps, cfg, sampler_name, scheduler,
clip,
vae_name,
positive, negative,
width, height, denoise=1.0, batch_size=1
):
return sample(
model, seed, steps, cfg, sampler_name, scheduler,
clip,
load_vae(vae_name),
positive, negative,
width, height, denoise, batch_size
)