-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
700 lines (557 loc) · 27.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@Description: :
@Date :2024/03/08
@Author :Hyejin Park
@version :1.0
'''
import os
import utils
import torch
import argparse
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from config.dataset_config import getData
from networks.resnet import ResNet18, ResNet34
from networks.wideresnet import WideResNet, Yao_WideResNet
from networks.mobilenetv2 import MobileNetV2
from networks.vgg import VGG
from AT_helper import Madry_PGD, adaad_inner_loss, rslad_inner_loss
from advertorch.attacks import LinfPGDAttack
def get_args():
parser = argparse.ArgumentParser(description='PyTorch Adversarial Training')
parser.add_argument('--dataset', type=str, default='CIFAR10')
parser.add_argument('--model', type=str, default='resnet18')
parser.add_argument('--method', type=str, default='Plain_Madry')
parser.add_argument('--teacher_model', type=str, default='wideresnet34_10')
parser.add_argument('--temp', default=30.0, type=float, help='temperature for distillation')
# AdaAD options
parser.add_argument('--AdaAD_alpha', default=1.0, type=float, help='AdaAD_alpha')
parser.add_argument('--ALP_beta', default=1.0, type=float, help='weight for logit pairing loss')
parser.add_argument('--alp', default='on', type=str, help='turn on/off for alp_loss')
parser.add_argument('--labeltype', type=str, help='labeling technique - smooth, gt, mix')
# TRADES options
parser.add_argument('--trades_beta', default=6.0, help='regularization, i.e., 1/lambda in TRADES')
# IAD options
parser.add_argument('--IAD_begin', default=60, type=int, help='IAD_begin')
parser.add_argument('--IAD_alpha', default=1.0, type=float, help='IAD_alpha')
parser.add_argument('--IAD_beta', default=0.1, type=float, help='IAD_beta')
# Inner optimization options
parser.add_argument('--epsilon', type=int, default=8, help='perturbation bound')
parser.add_argument('--num_steps', type=int, default=10, help='maximum perturbation step K')
parser.add_argument('--step_size', type=int, default=2, help='step size')
parser.add_argument('--rand_init', type=bool, default=True, help="whether to initialize adversarial sample with random noise")
# Is mixture of clean and adversarial loss
parser.add_argument('--mixture', action='store_true')
# Training options
parser.add_argument('--epochs', default=200, type=int, help='epochs')
parser.add_argument('--bs', default=128, type=int, help='batch size')
parser.add_argument('--optim', type=str, default='SGD', choices=['SGD', 'Adam'], help='optimizer')
parser.add_argument('--lr_max', default=0.1, type=float, help='learning rate')
parser.add_argument('--lr_schedule', type=str, default='piecewise', choices=['cosine', 'piecewise', 'constant'], help='learning schedule')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight_decay')
# whether warm_up lr from 0 to max_lr in the first n epochs
parser.add_argument('--warmup_lr', action='store_true')
parser.add_argument('--warmup_lr_epochs', default=15, type=int)
parser.add_argument('--gpu_id', type=str, default='0', choices=['0', '1', '2', '3', '4', '5', '6', '7'])
parser.add_argument('--root_path', type=str, default='tuned_models', help='root path')
parser.add_argument('--is_desc', action='store_true')
parser.add_argument('--desc_str', type=str, default='', help='desc_str')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--model_path', type=str, default='')
parser.add_argument('--seed', default=42, type=int, help='seed')
args = parser.parse_args()
return args
def get_auto_fname(args):
names = args.method
if args.method in ['Plain_Clean', 'Plain_Madry']:
names = names + '-%s' % args.model
if args.method in ['AdaAD_with_IAD1', 'DGAD_IAD1']:
names = names + '-T(%s)-S(%s)' % (args.teacher_model, args.model) + \
'-temp(%s)-begin(%s)-alpha(%s)-beta(%s)' % (args.temp,
args.IAD_begin, args.IAD_alpha, args.IAD_beta)
if args.method in ['AdaAD', 'DGAD']:
names = names + '-T(%s)-S(%s)' % (args.teacher_model, args.model) + '-alpha(%.4f)' % args.AdaAD_alpha + '-alp_beta(%.4f)' % args.ALP_beta
if args.method != 'Plain_Clean':
names = names + '-'.join(['-eps(%d)' % args.epsilon, 's_eps(%d)' %
args.step_size, 'n_steps(%d)' % args.num_steps])
names = names + '-'.join(['-epochs(%s)' % str(args.epochs), 'bs(%s)' % str(args.bs), 'optim(%s)' %
args.optim, 'lr_max(%s)' % str(args.lr_max), 'lr_sche(%s)' % args.lr_schedule])
if args.warmup_lr:
names = names + '-warmup(%s)' % str(args.warmup_lr_epoch)
if args.is_desc:
names = names + '-(%s)' % args.desc_str
return names
def lr_decay(epoch, total_epoch):
if args.lr_schedule == 'piecewise':
if total_epoch == 200:
epoch_point = [100, 150]
elif total_epoch == 110:
epoch_point = [100, 105] # Early stop for Madry adversarial training
else:
raise ValueError
if epoch < epoch_point[0]:
if args.warmup_lr and epoch < args.warmup_lr_epoch:
return 0.001 + epoch / args.warmup_lr_epoch * (args.lr_max-0.001)
return args.lr_max
if epoch < epoch_point[1]:
return args.lr_max / 10
else:
return args.lr_max / 100
elif args.lr_schedule == 'cosine':
if args.warmup_lr:
if epoch < args.warmup_lr_epoch:
return 0.001 + epoch / args.warmup_lr_epoch * (args.lr_max-0.001)
else:
return np.max([args.lr_max * 0.5 * (1 + np.cos((epoch-args.warmup_lr_epoch) / (total_epoch-args.warmup_lr_epoch) * np.pi)), 1e-4])
return np.max([args.lr_max * 0.5 * (1 + np.cos(epoch / total_epoch * np.pi)), 1e-4])
elif args.lr_schedule == 'constant':
return args.lr_max
else:
raise NotImplementedError
args = get_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# print('gpu_id:', args.gpu_id)
file_name = get_auto_fname(args)
save_path = os.path.join(args.root_path, args.dataset, args.method, file_name)
print('Save path:%s' % save_path)
if not os.path.isdir(save_path):
os.makedirs(save_path)
results_log_csv_name = os.path.join(save_path, 'results.csv')
print('==> Preparing data..')
# setup data loader
num_classes, train_data, test_data = getData(args.dataset)
trainloader = torch.utils.data.DataLoader(
train_data,
batch_size=args.bs,
shuffle=True,
num_workers=4,
pin_memory=True)
testloader = torch.utils.data.DataLoader(
test_data,
batch_size=400,
shuffle=False,
num_workers=4,
pin_memory=True)
# Model
if args.model == 'mobilenetV2':
net = MobileNetV2(num_classes=num_classes)
elif args.model == 'resnet18':
net = ResNet18(num_classes)
elif args.model == 'resnet34':
net = ResNet34(num_classes)
elif args.model == 'vgg16':
net = VGG('VGG16')
elif args.model == 'wideresnet34_10':
net = WideResNet(num_classes=num_classes)
elif args.model == 'wideresnet28_10':
net = WideResNet(num_classes=num_classes, depth=28, widen_factor=10)
elif args.model == 'wideresnet70_16':
net = WideResNet(num_classes=num_classes, depth=70, widen_factor=16)
else:
raise NotImplementedError
use_cuda = torch.cuda.is_available()
print('use_cuda:%s' % str(use_cuda))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
cudnn.benchmark = True
net.to(device)
if args.dataset == 'CIFAR10':
if args.method not in ['Plain_Clean', 'Plain_Madry']:
if args.teacher_model == 'wideresnet34_10':
teacher_net = WideResNet(num_classes=num_classes)
teacher_path = 'teacher_models/CIFAR10/wideresnet34_10/robust_teacher.pth'
teacher_state_dict = torch.load(teacher_path)['net']
elif args.teacher_model == 'Chen2021LTD_WRD34_20':
teacher_net = Yao_WideResNet(
num_classes=num_classes, depth=34, widen_factor=20, sub_block1=False)
teacher_path = 'teacher_models/CIFAR10/wideresnet34_20/Chen2021LTD_34_20.pt'
teacher_state_dict = torch.load(teacher_path)
state_dict = OrderedDict()
for k in list(teacher_state_dict.keys()):
state_dict[k[7:]] = teacher_state_dict.pop(k)
teacher_state_dict = state_dict
else:
raise NotImplementedError
print('==> Loading teacher..')
teacher_net.load_state_dict(teacher_state_dict)
teacher_net.to(device)
teacher_net.eval()
elif args.dataset == 'CIFAR100':
if args.method not in ['Plain_Clean', 'Plain_Madry']:
if args.teacher_model == 'Chen2021WRN34_10':
teacher_net = Yao_WideResNet(
num_classes=num_classes, depth=34, widen_factor=10, sub_block1=True)
teacher_path = 'teacher_models/CIFAR100/wideresnet34_10/Chen2021LTD.pt'
teacher_state_dict = torch.load(teacher_path)
else:
raise NotImplementedError
print('==> Loading teacher..')
teacher_net.load_state_dict(teacher_state_dict)
teacher_net.to(device)
teacher_net.eval()
else:
raise NotImplementedError
if args.optim == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=args.lr_max,
momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optim == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=args.lr_max,
weight_decay=args.weight_decay)
else:
raise NotImplementedError
# setup checkpoint
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(save_path), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join(
save_path, 'best_PGD10_acc_model.pth'))
net.load_state_dict(checkpoint['net'])
best_Test_acc = checkpoint['clean_acc']
best_Test_PGD10_acc = checkpoint['PGD10_acc']
best_Test_acc_epoch = checkpoint['epoch']
start_epoch = checkpoint['epoch'] + 1
else:
start_epoch = 0
best_Test_acc = 0
best_Test_Clean_acc_epoch = 0
best_Test_PGD10_acc = 0
best_Test_PGD10_acc_epoch = 0
print('==> Preparing %s %s %s' % (args.model, args.dataset, args.method))
print('==> Building model..')
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
global Train_acc
global train_loss
train_loss = 0
correct_ori = 0
total = 0
net.train()
lr_current = lr_decay(epoch, args.epochs)
optimizer.param_groups[0].update(lr=lr_current)
print('learning_rate: %s' % str(lr_current))
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
if args.method == 'Plain_Clean':
ori_outputs = net(inputs)
loss = nn.CrossEntropyLoss()(ori_outputs, targets)
optimizer.zero_grad()
elif args.method == 'Plain_Madry':
adv_inputs = Madry_PGD(net, inputs, targets, step_size=args.step_size/255,
steps=args.num_steps, epsilon=args.epsilon/255)
net.train()
optimizer.zero_grad()
adv_outputs = net(adv_inputs)
adv_loss = nn.CrossEntropyLoss()(adv_outputs, targets)
ori_outputs = net(inputs)
ori_loss = nn.CrossEntropyLoss()(ori_outputs, targets)
if args.mixture:
loss = args.mixture_alpha*ori_loss + \
(1-args.mixture_alpha)*adv_loss
else:
loss = adv_loss
elif args.method == 'AdaAD':
adv_inputs = adaad_inner_loss(net, teacher_net, inputs, step_size=args.step_size/255,
steps=args.num_steps, epsilon=args.epsilon/255)
net.train()
optimizer.zero_grad()
ori_outputs = net(inputs)
adv_outputs = net(adv_inputs)
with torch.no_grad():
teacher_net.eval()
t_ori_outputs = teacher_net(inputs)
t_adv_outputs = teacher_net(adv_inputs)
if args.dataset == 'CIFAR10':
kl_loss1 = nn.KLDivLoss()(F.log_softmax(adv_outputs, dim=1),
F.softmax(t_adv_outputs.detach(), dim=1))
kl_loss2 = nn.KLDivLoss()(F.log_softmax(ori_outputs, dim=1),
F.softmax(t_ori_outputs.detach(), dim=1))
if args.dataset == 'CIFAR100':
kl_loss1 = (1/len(adv_outputs))*torch.sum(nn.KLDivLoss(reduce=False)(
F.log_softmax(adv_outputs, dim=1), F.softmax(t_adv_outputs.detach(), dim=1)))
kl_loss2 = (1/len(adv_outputs))*torch.sum(nn.KLDivLoss(reduce=False)(
F.log_softmax(ori_outputs, dim=1), F.softmax(t_ori_outputs.detach(), dim=1)))
loss = args.AdaAD_alpha*kl_loss1 + (1-args.AdaAD_alpha)*kl_loss2
elif args.method == 'AdaAD_with_IAD1':
optimizer.zero_grad()
adv_inputs = adaad_inner_loss(net, teacher_net, inputs, step_size=args.step_size/255,
steps=args.num_steps, epsilon=args.epsilon/255)
net.train()
ori_outputs = net(inputs)
adv_outputs = net(adv_inputs)
Alpha = torch.ones(len(inputs)).cuda()
# basicop = net(adv_inputs).detach()
guide = teacher_net(adv_inputs)
teacher_outputs = teacher_net(adv_inputs)
KL_loss = nn.KLDivLoss(reduce=False)
XENT_loss = nn.CrossEntropyLoss()
if epoch >= args.IAD_begin:
for pp in range(len(adv_outputs)):
L = F.softmax(guide, dim=1)[pp][targets[pp].item()]
L = L.pow(args.IAD_beta).item()
Alpha[pp] = L
loss = args.IAD_alpha*args.temp*args.temp*(1/len(adv_outputs))*torch.sum(KL_loss(F.log_softmax(adv_outputs/args.temp, dim=1), F.softmax(teacher_outputs/args.temp, dim=1)).sum(dim=1)) + args.IAD_alpha*(
1/len(adv_outputs))*torch.sum(KL_loss(F.log_softmax(adv_outputs, dim=1), F.softmax(net(inputs), dim=1)).sum(dim=1).mul(1-Alpha))+(1.0-args.IAD_alpha)*XENT_loss(net(inputs), targets)
else:
loss = args.IAD_alpha*args.temp*args.temp*(1/len(adv_outputs))*torch.sum(KL_loss(F.log_softmax(adv_outputs/args.temp, dim=1), F.softmax(
teacher_outputs/args.temp, dim=1)).sum(dim=1))+(1.0-args.IAD_alpha)*XENT_loss(net(inputs), targets)
elif args.method == 'DGAD':
adv_inputs = adaad_inner_loss(net, teacher_net, inputs, step_size=args.step_size/255,
steps=args.num_steps, epsilon=args.epsilon/255)
net.train()
optimizer.zero_grad()
ori_outputs = net(inputs)
adv_outputs = net(adv_inputs)
KL_loss = nn.KLDivLoss(reduction='none')
XENT_loss = nn.CrossEntropyLoss(reduction='none')
with torch.no_grad():
teacher_net.eval()
t_ori_outputs = teacher_net(inputs)
t_adv_outputs = teacher_net(adv_inputs)
# Lambda * KL(s(x), t(x)) + (1-Lambda) * KL(s(x'), t(x'))
Lambda = torch.zeros(inputs.size(0)).to(device)
t_misclassified_group = (
torch.argmax(t_ori_outputs, dim=1) != targets)
Lambda[t_misclassified_group] = 1.0
num_lambda = Lambda.sum().item()
# t(x) != y, swap between max_probs and true_probs
ori_true_probs = torch.gather(t_ori_outputs, 1, targets.unsqueeze(1)).squeeze()
ori_max_probs, ori_max_indices = torch.max(t_ori_outputs, dim=1)
t_ori_outputs[t_misclassified_group, targets[t_misclassified_group]] = ori_max_probs[t_misclassified_group]
t_ori_outputs[t_misclassified_group, ori_max_indices[t_misclassified_group]] = ori_true_probs[t_misclassified_group]
# label swapping on adv inputs' misclassification
correct_probs = torch.gather(t_adv_outputs, 1, targets.unsqueeze(1)).squeeze()
max_probs, max_indices = torch.max((t_adv_outputs.scatter(1, targets.unsqueeze(1), -float('inf'))), dim=1)
margin = correct_probs - max_probs
mask = margin < 0
t_adv_outputs[mask, targets[mask]] = max_probs[mask]
t_adv_outputs[mask, max_indices[mask]] = correct_probs[mask]
loss_clean = (1 / (num_lambda + 1e-10)) * torch.sum(
Lambda * KL_loss(F.log_softmax(ori_outputs, dim=1), F.softmax(t_ori_outputs.detach(), dim=1)).sum(
dim=1))
loss_adv = (1 / (len(adv_inputs) - num_lambda)) * torch.sum(
(1 - Lambda) * KL_loss(F.log_softmax(adv_outputs, dim=1), F.softmax(t_adv_outputs.detach(), dim=1)).sum(dim=1))
if args.alp == 'on':
loss_alp = nn.MSELoss()(F.softmax(adv_outputs, dim=1), F.softmax(ori_outputs, dim=1))
if args.model == 'mobilenetV2':
loss = 0.5 * ((num_lambda / args.bs) * loss_clean + (
(args.bs - num_lambda) / args.bs)) * loss_adv + args.ALP_beta * loss_alp
# loss = loss * 0.5
else:
loss = (num_lambda / args.bs) * loss_clean + (
(args.bs - num_lambda) / args.bs) * loss_adv + args.ALP_beta * loss_alp
else:
loss = (num_lambda / args.bs) * loss_clean + ((args.bs - num_lambda) / args.bs) * loss_adv
elif args.method == 'DGAD_IAD1':
adv_inputs = adaad_inner_loss(net, teacher_net, inputs, step_size=args.step_size/255,
steps=args.num_steps, epsilon=args.epsilon/255)
net.train()
optimizer.zero_grad()
ori_outputs = net(inputs)
adv_outputs = net(adv_inputs)
KL_loss = nn.KLDivLoss(reduction='none')
XENT_loss = nn.CrossEntropyLoss(reduction='none')
with torch.no_grad():
teacher_net.eval()
t_ori_outputs = teacher_net(inputs)
t_adv_outputs = teacher_net(adv_inputs)
# Lambda * KL(s(x), t(x)) + (1-Lambda) * KL(s(x'), t(x'))
Lambda = torch.zeros(inputs.size(0)).to(device)
t_misclassified_group = (
torch.argmax(t_ori_outputs, dim=1) != targets)
Lambda[t_misclassified_group] = 1.0
num_lambda = Lambda.sum().item()
# label swapping on clean inputs
ori_true_probs = torch.gather(t_ori_outputs, 1, targets.unsqueeze(1)).squeeze()
ori_max_probs, ori_max_indices = torch.max(t_ori_outputs, dim=1)
t_ori_outputs[t_misclassified_group, targets[t_misclassified_group]] = ori_max_probs[t_misclassified_group]
t_ori_outputs[t_misclassified_group, ori_max_indices[t_misclassified_group]] = ori_true_probs[t_misclassified_group]
# label swapping on adv inputs
correct_probs = torch.gather(t_adv_outputs, 1, targets.unsqueeze(1)).squeeze()
max_probs, max_indices = torch.max((t_adv_outputs.scatter(1, targets.unsqueeze(1), -float('inf'))), dim=1)
margin = correct_probs - max_probs
mask = margin < 0
t_adv_outputs[mask, targets[mask]] = max_probs[mask]
t_adv_outputs[mask, max_indices[mask]] = correct_probs[mask]
Alpha_adv = torch.ones(len(inputs)).cuda()
Alpha_ori = torch.ones(len(inputs)).cuda()
if epoch >= args.IAD_begin:
for pp in range(len(adv_outputs)):
L_adv = F.softmax(t_adv_outputs, dim=1)[pp][targets[pp].item()]
L_adv = L_adv.pow(args.IAD_beta).item()
Alpha_adv[pp] = L_adv
L_ori = F.softmax(t_ori_outputs, dim=1)[pp][targets[pp].item()]
L_ori = L_ori.pow(args.IAD_beta).item()
Alpha_ori[pp] = L_ori
loss_clean = (1 / (num_lambda + 1e-10)) * torch.sum(
Lambda * KL_loss(F.log_softmax(ori_outputs, dim=1),
F.softmax(t_ori_outputs.detach(), dim=1)).sum(dim=1)) + (
1 / (num_lambda + 1e-10)) * torch.sum(Lambda * KL_loss(F.log_softmax(ori_outputs, dim=1), F.softmax(net(inputs), dim=1)).sum(dim=1).mul(1-Alpha_ori))
loss_adv = (1 / (len(adv_inputs) - num_lambda)) * torch.sum(
(1 - Lambda) * KL_loss(F.log_softmax(adv_outputs, dim=1),
F.softmax(t_adv_outputs.detach(), dim=1)).sum(dim=1)) + (
1 / (len(adv_inputs) - num_lambda)) * torch.sum((1 - Lambda) * KL_loss(F.log_softmax(adv_outputs, dim=1), F.softmax(net(adv_inputs), dim=1)).sum(dim=1).mul(1-Alpha_adv))
else:
loss_clean = (1 / (num_lambda + 1e-10)) * torch.sum(
Lambda * KL_loss(F.log_softmax(ori_outputs, dim=1), F.softmax(t_ori_outputs.detach(), dim=1)).sum(dim=1))
loss_adv = (1 / (len(adv_inputs) - num_lambda)) * torch.sum(
(1 - Lambda) * KL_loss(F.log_softmax(adv_outputs, dim=1), F.softmax(t_adv_outputs.detach(), dim=1)).sum(
dim=1))
if args.alp == 'on':
loss_alp = nn.MSELoss()(F.softmax(adv_outputs, dim=1), F.softmax(ori_outputs, dim=1))
if args.model == 'mobilenetV2':
loss = 0.5 * ((num_lambda / args.bs) * loss_clean + (
(args.bs - num_lambda) / args.bs)) * loss_adv + args.ALP_beta * loss_alp
else:
loss = (num_lambda / args.bs) * loss_clean + (
(args.bs - num_lambda) / args.bs) * loss_adv + args.ALP_beta * loss_alp
else:
loss = (num_lambda / args.bs) * loss_clean + ((args.bs - num_lambda) / args.bs) * loss_adv
else:
raise NotImplementedError
loss.backward()
optimizer.step()
train_loss += loss.data
correct_ori += torch.max(ori_outputs, 1)[1].eq(targets.data).cpu().sum()
total += targets.size(0)
utils.progress_bar(
batch_idx,
len(trainloader),
'Total_Loss: %.3f| Clean Acc: %.3f%%(%d/%d)'
'' % (train_loss / (batch_idx + 1),
100. * float(correct_ori) / total,
correct_ori,
total))
Train_acc = 100. * float(correct_ori) / total
def test(epoch):
global Test_acc
global best_Test_acc
global best_Test_acc_epoch
global Test_PGD10_acc
global best_Test_PGD10_acc
global best_Test_PGD10_acc_epoch
global test_loss
test_loss = 0
correct_ori = 0
correct_PGD10 = 0
correct_total = 0
total = 0
net.eval()
adversary = LinfPGDAttack(net, loss_fn=nn.CrossEntropyLoss(),
eps=8/255, nb_iter=10, eps_iter=2/255, rand_init=True, clip_min=0., clip_max=1., targeted=False)
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
ori_outputs = net(inputs)
loss = nn.CrossEntropyLoss()(ori_outputs, targets)
test_loss += loss.data
correct_ori += torch.max(ori_outputs,
1)[1].eq(targets.data).cpu().sum()
total += targets.size(0)
adv_PGD10 = adversary.perturb(inputs, targets)
adv_PGD10_outputs = net(adv_PGD10)
correct_PGD10 += torch.max(adv_PGD10_outputs,
1)[1].eq(targets.data).cpu().sum()
correct_total = total
utils.progress_bar(
batch_idx,
len(testloader),
'Total_Loss: %.3f| Clean Acc: %.3f%%|(%d/%d)| PGD10 Acc: %.3f%%|(%d/%d)'
'' % (test_loss / (batch_idx + 1),
100. * float(correct_ori) / total,
correct_ori,
total,
100. * float(correct_PGD10) / correct_total,
correct_PGD10,
correct_total))
# Save checkpoint.
Test_acc = 100. * float(correct_ori) / total
Test_PGD10_acc = 100. * float(correct_PGD10) / correct_total
if Test_acc > best_Test_acc:
print('Saving..')
print("best_Test_clean_acc: %0.3f, \tits Test_PGD10_acc: %0.3f" %
(Test_acc, Test_PGD10_acc))
state = {
'net': net.state_dict() if use_cuda else net,
'clean_acc': Test_acc,
'PGD10_acc': Test_PGD10_acc,
'epoch': epoch,
}
if not os.path.isdir(save_path):
os.mkdir(save_path)
torch.save(state, os.path.join(save_path, 'best_clean_acc_model.pth'))
best_Test_acc = Test_acc
best_Test_acc_epoch = epoch
if Test_PGD10_acc > best_Test_PGD10_acc:
print('Saving..')
print("best_Test_PGD10_acc: %0.3f, \tits Test_clean_acc: %0.3f" %
(Test_PGD10_acc, Test_acc))
state = {
'net': net.state_dict() if use_cuda else net,
'clean_acc': Test_acc,
'PGD10_acc': Test_PGD10_acc,
'epoch': epoch,
}
if not os.path.isdir(save_path):
os.mkdir(save_path)
torch.save(state, os.path.join(save_path, 'best_PGD10_acc_model.pth'))
best_Test_PGD10_acc = Test_PGD10_acc
best_Test_PGD10_acc_epoch = epoch
if epoch == args.epochs - 1:
print('Saving..')
state = {
'net': net.state_dict() if use_cuda else net,
'clean_acc': Test_acc,
'PGD10_acc': Test_PGD10_acc,
'epoch': epoch,
}
if not os.path.isdir(save_path):
os.mkdir(save_path)
torch.save(state, os.path.join(
save_path, 'last_epoch_model(%s).pth' % epoch))
def main():
# record train log
with open(results_log_csv_name, 'w') as f:
f.write(
'epoch, train_loss, test_loss, train_acc, test_clean_acc, test_PGD10_acc, time\n')
# start train
for epoch in range(start_epoch, args.epochs):
print('current time:', datetime.now().strftime('%b%d-%H:%M:%S'))
train(epoch)
test(epoch)
# Log results
with open(results_log_csv_name, 'a') as f:
f.write('%5d, %.5f, %.5f, %.5f, %.5f, %.5f, %s,\n'
'' % (epoch,
train_loss,
test_loss,
Train_acc,
Test_acc,
Test_PGD10_acc,
datetime.now().strftime('%b%d-%H:%M:%S')))
print("best_Test_Clean_acc: %.3f" % best_Test_acc)
print("best_Test_Clean_acc_epoch: %d" % best_Test_acc_epoch)
print("best_Test_PGD10_acc: %.3f" % best_Test_PGD10_acc)
print("best_Test_PGD10_acc_epoch: %d" % best_Test_PGD10_acc_epoch)
# best ACC
with open(results_log_csv_name, 'a') as f:
f.write('%s,%03d,%0.3f,%s,%03d,%0.3f,\n' % ('best clean acc (test)',
best_Test_acc_epoch,
best_Test_acc,
'best PGD10 acc (test)',
best_Test_PGD10_acc_epoch,
best_Test_PGD10_acc))
if __name__ == '__main__':
torch.manual_seed(args.seed)
np.random.seed(args.seed)
main()