This repository has been archived by the owner on Jan 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 54
/
tree.rs
436 lines (388 loc) · 15 KB
/
tree.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use move_cell::MoveCell;
use std::cell::{Cell, RefCell};
use std::collections::HashMap;
use std::fmt;
use std::ops::Deref;
use html5ever::tree_builder::QuirksMode;
use rc::{Rc, Weak};
use string_cache::QualName;
use iter::NodeIterator;
/// Node data specific to the node type.
#[derive(Debug, PartialEq, Clone)]
pub enum NodeData {
/// Element node
Element(ElementData),
/// Text node
Text(RefCell<String>),
/// Comment node
Comment(RefCell<String>),
/// Doctype node
Doctype(Doctype),
/// Document node
Document(DocumentData),
}
/// Data specific to doctype nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct Doctype {
/// The name of the doctype
pub name: String,
/// The public ID of the doctype
pub public_id: String,
/// The system ID of the doctype
pub system_id: String,
}
/// Data specific to element nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct ElementData {
/// The namespace and local name of the element, such as `ns!(html)` and `body`.
pub name: QualName,
/// The attributes of the elements.
pub attributes: RefCell<HashMap<QualName, String>>,
}
/// Data specific to document nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct DocumentData {
#[doc(hidden)]
pub _quirks_mode: Cell<QuirksMode>,
}
impl DocumentData {
/// The quirks mode of the document, as determined by the HTML parser.
#[inline]
pub fn quirks_mode(&self) -> QuirksMode {
self._quirks_mode.get()
}
}
/// A strong reference to a node.
///
/// A node is destroyed when the last strong reference to it dropped.
///
/// Each node holds a strong reference to its first child and next sibling (if any),
/// but only a weak reference to its last child, previous sibling, and parent.
/// This is to avoid strong reference cycles, which would cause memory leaks.
///
/// As a result, a single `NodeRef` is sufficient to keep alive a node
/// and nodes that are after it in tree order
/// (its descendants, its following siblings, and their descendants)
/// but not other nodes in a tree.
///
/// To avoid detroying nodes prematurely,
/// programs typically hold a strong reference to the root of a document
/// until they’re done with that document.
#[derive(Clone, Debug)]
pub struct NodeRef(pub Rc<Node>);
impl Deref for NodeRef {
type Target = Node;
#[inline]
fn deref(&self) -> &Node {
&*self.0
}
}
impl Eq for NodeRef {}
impl PartialEq for NodeRef {
#[inline]
fn eq(&self, other: &NodeRef) -> bool {
let a: *const Node = &*self.0;
let b: *const Node = &*other.0;
a == b
}
}
/// A node inside a DOM-like tree.
pub struct Node {
parent: MoveCell<Option<Weak<Node>>>,
previous_sibling: MoveCell<Option<Weak<Node>>>,
next_sibling: MoveCell<Option<Rc<Node>>>,
first_child: MoveCell<Option<Rc<Node>>>,
last_child: MoveCell<Option<Weak<Node>>>,
data: NodeData,
}
impl fmt::Debug for Node {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{:?} @ {:?}", self.data, self as *const Node)
}
}
/// Prevent implicit recursion when dropping nodes to avoid overflowing the stack.
///
/// The implicit drop is correct, but recursive.
/// In the worst case (where no node has both a next sibling and a child),
/// a tree of a few tens of thousands of nodes could cause a stack overflow.
///
/// This `Drop` implementations makes sure the recursion does not happen.
/// Instead, it has an explicit `Vec<Rc<Node>>` stack to traverse the subtree,
/// but only following `Rc<Node>` references that are "unique":
/// that have a strong reference count of 1.
/// Those are the nodes that would have been dropped recursively.
///
/// The stack holds ancestors of the current node rather than preceding siblings,
/// on the assumption that large document trees are typically wider than deep.
impl Drop for Node {
fn drop(&mut self) {
// `.take_if_unique_strong()` temporarily leaves the tree in an inconsistent state,
// as the corresponding `Weak` reference in the other direction is not removed.
// It is important that all `Some(_)` strong references it returns
// are dropped by the end of this `drop` call,
// and that no user code is invoked in-between.
// Sharing `stack` between these two calls is not necessary,
// but it allows re-using memory allocations.
let mut stack = Vec::new();
if let Some(rc) = self.first_child.take_if_unique_strong() {
non_recursive_drop_unique_rc(rc, &mut stack);
}
if let Some(rc) = self.next_sibling.take_if_unique_strong() {
non_recursive_drop_unique_rc(rc, &mut stack);
}
fn non_recursive_drop_unique_rc(mut rc: Rc<Node>, stack: &mut Vec<Rc<Node>>) {
loop {
if let Some(child) = rc.first_child.take_if_unique_strong() {
stack.push(rc);
rc = child;
continue
}
if let Some(sibling) = rc.next_sibling.take_if_unique_strong() {
// The previous value of `rc: Rc<Node>` is dropped here.
// Since it was unique, the corresponding `Node` is dropped as well.
// `<Node as Drop>::drop` does not call `drop_rc`
// as both the first child and next sibling were already taken.
// Weak reference counts decremented here for `MoveCell`s that are `Some`:
// * `rc.parent`: still has a strong reference in `stack` or elsewhere
// * `rc.last_child`: this is the last weak ref. Deallocated now.
// * `rc.previous_sibling`: this is the last weak ref. Deallocated now.
rc = sibling;
continue
}
if let Some(parent) = stack.pop() {
// Same as in the above comment.
rc = parent;
continue
}
return
}
}
}
}
impl NodeRef {
/// Create a new node.
#[inline]
pub fn new(data: NodeData) -> NodeRef {
NodeRef(Rc::new(Node {
parent: MoveCell::new(None),
first_child: MoveCell::new(None),
last_child: MoveCell::new(None),
previous_sibling: MoveCell::new(None),
next_sibling: MoveCell::new(None),
data: data,
}))
}
/// Create a new element node.
#[inline]
pub fn new_element<I>(name: QualName, attributes: I) -> NodeRef
where I: IntoIterator<Item=(QualName, String)> {
NodeRef::new(NodeData::Element(ElementData {
name: name,
attributes: RefCell::new(attributes.into_iter().collect()),
}))
}
/// Create a new text node.
#[inline]
pub fn new_text<T: Into<String>>(value: T) -> NodeRef {
NodeRef::new(NodeData::Text(RefCell::new(value.into())))
}
/// Create a new comment node.
#[inline]
pub fn new_comment<T: Into<String>>(value: T) -> NodeRef {
NodeRef::new(NodeData::Comment(RefCell::new(value.into())))
}
/// Create a new doctype node.
#[inline]
pub fn new_doctype<T1, T2, T3>(name: T1, public_id: T2, system_id: T3) -> NodeRef
where T1: Into<String>, T2: Into<String>, T3: Into<String> {
NodeRef::new(NodeData::Doctype(Doctype {
name: name.into(),
public_id: public_id.into(),
system_id: system_id.into(),
}))
}
/// Create a new document node.
#[inline]
pub fn new_document() -> NodeRef {
NodeRef::new(NodeData::Document(DocumentData {
_quirks_mode: Cell::new(QuirksMode::NoQuirks),
}))
}
/// Return the concatenation of all text nodes in this subtree.
pub fn text_contents(&self) -> String {
let mut s = String::new();
for text_node in self.inclusive_descendants().text_nodes() {
s.push_str(&text_node.borrow());
}
s
}
}
impl Node {
/// Return a reference to this node’s node-type-specific data.
#[inline]
pub fn data(&self) -> &NodeData {
&self.data
}
/// If this node is an element, return a reference to element-specific data.
#[inline]
pub fn as_element(&self) -> Option<&ElementData> {
match self.data {
NodeData::Element(ref value) => Some(value),
_ => None
}
}
/// If this node is a text node, return a reference to its contents.
#[inline]
pub fn as_text(&self) -> Option<&RefCell<String>> {
match self.data {
NodeData::Text(ref value) => Some(value),
_ => None
}
}
/// If this node is a comment, return a reference to its contents.
#[inline]
pub fn as_comment(&self) -> Option<&RefCell<String>> {
match self.data {
NodeData::Comment(ref value) => Some(value),
_ => None
}
}
/// If this node is a document, return a reference to doctype-specific data.
#[inline]
pub fn as_doctype(&self) -> Option<&Doctype> {
match self.data {
NodeData::Doctype(ref value) => Some(value),
_ => None
}
}
/// If this node is a document, return a reference to document-specific data.
#[inline]
pub fn as_document(&self) -> Option<&DocumentData> {
match self.data {
NodeData::Document(ref value) => Some(value),
_ => None
}
}
/// Return a reference to the parent node, unless this node is the root of the tree.
#[inline]
pub fn parent(&self) -> Option<NodeRef> {
self.parent.upgrade().map(NodeRef)
}
/// Return a reference to the first child of this node, unless it has no child.
#[inline]
pub fn first_child(&self) -> Option<NodeRef> {
self.first_child.clone_inner().map(NodeRef)
}
/// Return a reference to the last child of this node, unless it has no child.
#[inline]
pub fn last_child(&self) -> Option<NodeRef> {
self.last_child.upgrade().map(NodeRef)
}
/// Return a reference to the previous sibling of this node, unless it is a first child.
#[inline]
pub fn previous_sibling(&self) -> Option<NodeRef> {
self.previous_sibling.upgrade().map(NodeRef)
}
/// Return a reference to the previous sibling of this node, unless it is a last child.
#[inline]
pub fn next_sibling(&self) -> Option<NodeRef> {
self.next_sibling.clone_inner().map(NodeRef)
}
/// Detach a node from its parent and siblings. Children are not affected.
///
/// To remove a node and its descendants, detach it and drop any strong reference to it.
pub fn detach(&self) {
let parent_weak = self.parent.take();
let previous_sibling_weak = self.previous_sibling.take();
let next_sibling_strong = self.next_sibling.take();
let previous_sibling_opt = previous_sibling_weak.as_ref().and_then(|weak| weak.upgrade());
if let Some(next_sibling_ref) = next_sibling_strong.as_ref() {
next_sibling_ref.previous_sibling.set(previous_sibling_weak);
} else if let Some(parent_ref) = parent_weak.as_ref() {
if let Some(parent_strong) = parent_ref.upgrade() {
parent_strong.last_child.set(previous_sibling_weak);
}
}
if let Some(previous_sibling_strong) = previous_sibling_opt {
previous_sibling_strong.next_sibling.set(next_sibling_strong);
} else if let Some(parent_ref) = parent_weak.as_ref() {
if let Some(parent_strong) = parent_ref.upgrade() {
parent_strong.first_child.set(next_sibling_strong);
}
}
}
}
impl NodeRef {
/// Append a new child to this node, after existing children.
///
/// The new child is detached from its previous position.
pub fn append(&self, new_child: NodeRef) {
new_child.detach();
new_child.parent.set(Some(self.0.downgrade()));
if let Some(last_child_weak) = self.last_child.replace(Some(new_child.0.downgrade())) {
if let Some(last_child) = last_child_weak.upgrade() {
new_child.previous_sibling.set(Some(last_child_weak));
debug_assert!(last_child.next_sibling.is_none());
last_child.next_sibling.set(Some(new_child.0));
return
}
}
debug_assert!(self.first_child.is_none());
self.first_child.set(Some(new_child.0));
}
/// Prepend a new child to this node, before existing children.
///
/// The new child is detached from its previous position.
pub fn prepend(&self, new_child: NodeRef) {
new_child.detach();
new_child.parent.set(Some(self.0.downgrade()));
if let Some(first_child) = self.first_child.take() {
debug_assert!(first_child.previous_sibling.is_none());
first_child.previous_sibling.set(Some(new_child.0.downgrade()));
new_child.next_sibling.set(Some(first_child));
} else {
debug_assert!(self.first_child.is_none());
self.last_child.set(Some(new_child.0.downgrade()));
}
self.first_child.set(Some(new_child.0));
}
/// Insert a new sibling after this node.
///
/// The new sibling is detached from its previous position.
pub fn insert_after(&self, new_sibling: NodeRef) {
new_sibling.detach();
new_sibling.parent.set(self.parent.clone_inner());
new_sibling.previous_sibling.set(Some(self.0.downgrade()));
if let Some(next_sibling) = self.next_sibling.take() {
debug_assert!(next_sibling.previous_sibling().unwrap() == *self);
next_sibling.previous_sibling.set(Some(new_sibling.0.downgrade()));
new_sibling.next_sibling.set(Some(next_sibling));
} else if let Some(parent) = self.parent() {
debug_assert!(parent.last_child().unwrap() == *self);
parent.last_child.set(Some(new_sibling.0.downgrade()));
}
self.next_sibling.set(Some(new_sibling.0));
}
/// Insert a new sibling before this node.
///
/// The new sibling is detached from its previous position.
pub fn insert_before(&self, new_sibling: NodeRef) {
new_sibling.detach();
new_sibling.parent.set(self.parent.clone_inner());
new_sibling.next_sibling.set(Some(self.0.clone()));
if let Some(previous_sibling_weak) = self.previous_sibling.replace(
Some(new_sibling.0.downgrade())) {
if let Some(previous_sibling) = previous_sibling_weak.upgrade() {
new_sibling.previous_sibling.set(Some(previous_sibling_weak));
debug_assert!(previous_sibling.next_sibling().unwrap() == *self);
previous_sibling.next_sibling.set(Some(new_sibling.0));
return
}
}
if let Some(parent) = self.parent() {
debug_assert!(parent.first_child().unwrap() == *self);
parent.first_child.set(Some(new_sibling.0));
}
}
}