-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain.py
51 lines (39 loc) · 1.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import examples.training # noqa: F401
import pytorch_lightning as pl
from perceiver.data.text import ImdbDataModule, Task
from perceiver.model.text.mlm import LitMaskedLanguageModel
from perceiver.scripts.lrs import ConstantWithWarmupLR
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.strategies import DDPStrategy
from torch.optim import AdamW
from transformers import AutoConfig
PRETRAINED_MODEL = "krasserm/perceiver-io-mlm"
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=1e-5)
scheduler = ConstantWithWarmupLR(optimizer, warmup_steps=1000)
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "interval": "step", "frequency": 1},
}
setattr(LitMaskedLanguageModel, "configure_optimizers", configure_optimizers),
config = AutoConfig.from_pretrained(PRETRAINED_MODEL).backend_config
config.activation_checkpointing = True
data = ImdbDataModule(
tokenizer=PRETRAINED_MODEL,
add_special_tokens=True,
max_seq_len=config.encoder.max_seq_len,
batch_size=32,
task=Task.mlm,
)
if __name__ == "__main__":
lit_model = LitMaskedLanguageModel.create(config, params=PRETRAINED_MODEL)
trainer = pl.Trainer(
accelerator="gpu",
precision=16,
devices=2,
max_epochs=12,
log_every_n_steps=20,
strategy=DDPStrategy(find_unused_parameters=False),
logger=TensorBoardLogger(save_dir="logs", name="mlm"),
)
trainer.fit(lit_model, datamodule=data)