diff --git a/README.md b/README.md index 9c7ecad99..b10da0f23 100644 --- a/README.md +++ b/README.md @@ -154,7 +154,18 @@ The majority of scripts is licensed under ASL 2.0 (including codes from Diffuser - `--fused_optimizer_groups` cannot be used with `--fused_backward_pass`. When using AdaFactor, the memory usage is slightly larger than with Fused optimizer. PyTorch 2.1 or later is required. - Mechanism: While Fused optimizer performs backward/step for individual parameters within the optimizer, optimizer groups reduce memory usage by grouping parameters and creating multiple optimizers to perform backward/step for each group. Fused optimizer requires implementation on the optimizer side, while optimizer groups are implemented only on the training script side. -- Fixed some bugs when using DeepSpeed. Related [#1247] +- LoRA+ is supported. PR [#1233](https://github.com/kohya-ss/sd-scripts/pull/1233) Thanks to rockerBOO! + - LoRA+ is a method to improve training speed by increasing the learning rate of the UP side (LoRA-B) of LoRA. Specify the multiple. The original paper recommends 16, but adjust as needed. Please see the PR for details. + - Specify `loraplus_lr_ratio` with `--network_args`. Example: `--network_args "loraplus_lr_ratio=16"` + - `loraplus_unet_lr_ratio` and `loraplus_lr_ratio` can be specified separately for U-Net and Text Encoder. + - Example: `--network_args "loraplus_unet_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"` or `--network_args "loraplus_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"` etc. + - `network_module` `networks.lora` and `networks.dylora` are available. + +- LoRA training in SDXL now supports block-wise learning rates and block-wise dim (rank). PR [#1331](https://github.com/kohya-ss/sd-scripts/pull/1331) + - Specify the learning rate and dim (rank) for each block. + - See [Block-wise learning rates in LoRA](./docs/train_network_README-ja.md#階層別学習率) for details (Japanese only). + +- Fixed some bugs when using DeepSpeed. Related [#1247](https://github.com/kohya-ss/sd-scripts/pull/1247) - SDXL の学習時に Fused optimizer が使えるようになりました。PR [#1259](https://github.com/kohya-ss/sd-scripts/pull/1259) 2kpr 氏に感謝します。 - optimizer の backward pass に step を統合することで学習時のメモリ使用量を大きく削減します。学習結果は未適用時と同一ですが、メモリが潤沢にある場合は速度は遅くなります。 @@ -171,7 +182,18 @@ The majority of scripts is licensed under ASL 2.0 (including codes from Diffuser - `--fused_optimizer_groups` は `--fused_backward_pass` と併用できません。AdaFactor 使用時は Fused optimizer よりも若干メモリ使用量は大きくなります。PyTorch 2.1 以降が必要です。 - 仕組み:Fused optimizer が optimizer 内で個別のパラメータについて backward/step を行っているのに対して、optimizer groups はパラメータをグループ化して複数の optimizer を作成し、それぞれ backward/step を行うことでメモリ使用量を削減します。Fused optimizer は optimizer 側の実装が必要ですが、optimizer groups は学習スクリプト側のみで実装されています。やはり SDXL の学習でのみ効果があります。 -- DeepSpeed 使用時のいくつかのバグを修正しました。関連 [#1247] +- LoRA+ がサポートされました。PR [#1233](https://github.com/kohya-ss/sd-scripts/pull/1233) rockerBOO 氏に感謝します。 + - LoRA の UP 側(LoRA-B)の学習率を上げることで学習速度の向上を図る手法です。倍数で指定します。元の論文では 16 が推奨されていますが、データセット等にもよりますので、適宜調整してください。PR もあわせてご覧ください。 + - `--network_args` で `loraplus_lr_ratio` を指定します。例:`--network_args "loraplus_lr_ratio=16"` + - `loraplus_unet_lr_ratio` と `loraplus_lr_ratio` で、U-Net および Text Encoder に個別の値を指定することも可能です。 + - 例:`--network_args "loraplus_unet_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"` または `--network_args "loraplus_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"` など + - `network_module` の `networks.lora` および `networks.dylora` で使用可能です。 + +- SDXL の LoRA で階層別学習率、階層別 dim (rank) をサポートしました。PR [#1331](https://github.com/kohya-ss/sd-scripts/pull/1331) + - ブロックごとに学習率および dim (rank) を指定することができます。 + - 詳細は [LoRA の階層別学習率](./docs/train_network_README-ja.md#階層別学習率) をご覧ください。 + +- DeepSpeed 使用時のいくつかのバグを修正しました。関連 [#1247](https://github.com/kohya-ss/sd-scripts/pull/1247) ### Apr 7, 2024 / 2024-04-07: v0.8.7 diff --git a/docs/train_network_README-ja.md b/docs/train_network_README-ja.md index 2205a7736..46085117c 100644 --- a/docs/train_network_README-ja.md +++ b/docs/train_network_README-ja.md @@ -181,16 +181,16 @@ python networks\extract_lora_from_dylora.py --model "foldername/dylora-model.saf 詳細は[PR #355](https://github.com/kohya-ss/sd-scripts/pull/355) をご覧ください。 -SDXLは現在サポートしていません。 - フルモデルの25個のブロックの重みを指定できます。最初のブロックに該当するLoRAは存在しませんが、階層別LoRA適用等との互換性のために25個としています。またconv2d3x3に拡張しない場合も一部のブロックにはLoRAが存在しませんが、記述を統一するため常に25個の値を指定してください。 +SDXL では down/up 9 個、middle 3 個の値を指定してください。 + `--network_args` で以下の引数を指定してください。 - `down_lr_weight` : U-Netのdown blocksの学習率の重みを指定します。以下が指定可能です。 - - ブロックごとの重み : `"down_lr_weight=0,0,0,0,0,0,1,1,1,1,1,1"` のように12個の数値を指定します。 + - ブロックごとの重み : `"down_lr_weight=0,0,0,0,0,0,1,1,1,1,1,1"` のように12個(SDXL では 9 個)の数値を指定します。 - プリセットからの指定 : `"down_lr_weight=sine"` のように指定します(サインカーブで重みを指定します)。sine, cosine, linear, reverse_linear, zeros が指定可能です。また `"down_lr_weight=cosine+.25"` のように `+数値` を追加すると、指定した数値を加算します(0.25~1.25になります)。 -- `mid_lr_weight` : U-Netのmid blockの学習率の重みを指定します。`"down_lr_weight=0.5"` のように数値を一つだけ指定します。 +- `mid_lr_weight` : U-Netのmid blockの学習率の重みを指定します。`"down_lr_weight=0.5"` のように数値を一つだけ指定します(SDXL の場合は 3 個)。 - `up_lr_weight` : U-Netのup blocksの学習率の重みを指定します。down_lr_weightと同様です。 - 指定を省略した部分は1.0として扱われます。また重みを0にするとそのブロックのLoRAモジュールは作成されません。 - `block_lr_zero_threshold` : 重みがこの値以下の場合、LoRAモジュールを作成しません。デフォルトは0です。 @@ -215,6 +215,9 @@ network_args = [ "block_lr_zero_threshold=0.1", "down_lr_weight=sine+.5", "mid_l フルモデルの25個のブロックのdim (rank)を指定できます。階層別学習率と同様に一部のブロックにはLoRAが存在しない場合がありますが、常に25個の値を指定してください。 +SDXL では 23 個の値を指定してください。一部のブロックにはLoRA が存在しませんが、`sdxl_train.py` の[階層別学習率](./train_SDXL-en.md) との互換性のためです。 +対応は、`0: time/label embed, 1-9: input blocks 0-8, 10-12: mid blocks 0-2, 13-21: output blocks 0-8, 22: out` です。 + `--network_args` で以下の引数を指定してください。 - `block_dims` : 各ブロックのdim (rank)を指定します。`"block_dims=2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2"` のように25個の数値を指定します。 diff --git a/networks/dylora.py b/networks/dylora.py index 637f33450..d57e3d580 100644 --- a/networks/dylora.py +++ b/networks/dylora.py @@ -18,10 +18,13 @@ import torch from torch import nn from library.utils import setup_logging + setup_logging() import logging + logger = logging.getLogger(__name__) + class DyLoRAModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. @@ -195,7 +198,7 @@ def create_network( conv_alpha = 1.0 else: conv_alpha = float(conv_alpha) - + if unit is not None: unit = int(unit) else: @@ -211,6 +214,16 @@ def create_network( unit=unit, varbose=True, ) + + loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) + loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) + loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) + loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None + loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None + loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None + if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: + network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) + return network @@ -280,6 +293,10 @@ def __init__( self.alpha = alpha self.apply_to_conv = apply_to_conv + self.loraplus_lr_ratio = None + self.loraplus_unet_lr_ratio = None + self.loraplus_text_encoder_lr_ratio = None + if modules_dim is not None: logger.info("create LoRA network from weights") else: @@ -320,9 +337,9 @@ def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit) loras.append(lora) return loras - + text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] - + self.text_encoder_loras = [] for i, text_encoder in enumerate(text_encoders): if len(text_encoders) > 1: @@ -331,7 +348,7 @@ def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules else: index = None logger.info("create LoRA for Text Encoder") - + text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) self.text_encoder_loras.extend(text_encoder_loras) @@ -346,6 +363,11 @@ def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules self.unet_loras = create_modules(True, unet, target_modules) logger.info(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") + def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): + self.loraplus_lr_ratio = loraplus_lr_ratio + self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio + self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio + def set_multiplier(self, multiplier): self.multiplier = multiplier for lora in self.text_encoder_loras + self.unet_loras: @@ -406,27 +428,53 @@ def merge_to(self, text_encoder, unet, weights_sd, dtype, device): logger.info(f"weights are merged") """ + # 二つのText Encoderに別々の学習率を設定できるようにするといいかも def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): self.requires_grad_(True) all_params = [] - def enumerate_params(loras): - params = [] + def assemble_params(loras, lr, ratio): + param_groups = {"lora": {}, "plus": {}} for lora in loras: - params.extend(lora.parameters()) + for name, param in lora.named_parameters(): + if ratio is not None and "lora_B" in name: + param_groups["plus"][f"{lora.lora_name}.{name}"] = param + else: + param_groups["lora"][f"{lora.lora_name}.{name}"] = param + + params = [] + for key in param_groups.keys(): + param_data = {"params": param_groups[key].values()} + + if len(param_data["params"]) == 0: + continue + + if lr is not None: + if key == "plus": + param_data["lr"] = lr * ratio + else: + param_data["lr"] = lr + + if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: + continue + + params.append(param_data) + return params if self.text_encoder_loras: - param_data = {"params": enumerate_params(self.text_encoder_loras)} - if text_encoder_lr is not None: - param_data["lr"] = text_encoder_lr - all_params.append(param_data) + params = assemble_params( + self.text_encoder_loras, + text_encoder_lr if text_encoder_lr is not None else default_lr, + self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio, + ) + all_params.extend(params) if self.unet_loras: - param_data = {"params": enumerate_params(self.unet_loras)} - if unet_lr is not None: - param_data["lr"] = unet_lr - all_params.append(param_data) + params = assemble_params( + self.unet_loras, default_lr if unet_lr is None else unet_lr, self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio + ) + all_params.extend(params) return all_params diff --git a/networks/lora.py b/networks/lora.py index d1208040f..00d21b0ed 100644 --- a/networks/lora.py +++ b/networks/lora.py @@ -12,6 +12,7 @@ import torch import re from library.utils import setup_logging +from library.sdxl_original_unet import SdxlUNet2DConditionModel setup_logging() import logging @@ -385,14 +386,14 @@ def to_out_forward(self, x): return out -def parse_block_lr_kwargs(nw_kwargs): +def parse_block_lr_kwargs(is_sdxl: bool, nw_kwargs: Dict) -> Optional[List[float]]: down_lr_weight = nw_kwargs.get("down_lr_weight", None) mid_lr_weight = nw_kwargs.get("mid_lr_weight", None) up_lr_weight = nw_kwargs.get("up_lr_weight", None) # 以上のいずれにも設定がない場合は無効としてNoneを返す if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None: - return None, None, None + return None # extract learning rate weight for each block if down_lr_weight is not None: @@ -401,18 +402,16 @@ def parse_block_lr_kwargs(nw_kwargs): down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")] if mid_lr_weight is not None: - mid_lr_weight = float(mid_lr_weight) + mid_lr_weight = [(float(s) if s else 0.0) for s in mid_lr_weight.split(",")] if up_lr_weight is not None: if "," in up_lr_weight: up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")] - down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight( - down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0)) + return get_block_lr_weight( + is_sdxl, down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0)) ) - return down_lr_weight, mid_lr_weight, up_lr_weight - def create_network( multiplier: float, @@ -424,6 +423,9 @@ def create_network( neuron_dropout: Optional[float] = None, **kwargs, ): + # if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True + is_sdxl = unet is not None and issubclass(unet.__class__, SdxlUNet2DConditionModel) + if network_dim is None: network_dim = 4 # default if network_alpha is None: @@ -441,21 +443,21 @@ def create_network( # block dim/alpha/lr block_dims = kwargs.get("block_dims", None) - down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) + block_lr_weight = parse_block_lr_kwargs(is_sdxl, kwargs) # 以上のいずれかに指定があればblockごとのdim(rank)を有効にする - if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None: + if block_dims is not None or block_lr_weight is not None: block_alphas = kwargs.get("block_alphas", None) conv_block_dims = kwargs.get("conv_block_dims", None) conv_block_alphas = kwargs.get("conv_block_alphas", None) block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas( - block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha + is_sdxl, block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha ) # remove block dim/alpha without learning rate block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas( - block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight + is_sdxl, block_dims, block_alphas, conv_block_dims, conv_block_alphas, block_lr_weight ) else: @@ -488,10 +490,20 @@ def create_network( conv_block_dims=conv_block_dims, conv_block_alphas=conv_block_alphas, varbose=True, + is_sdxl=is_sdxl, ) - if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: - network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) + loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) + loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) + loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) + loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None + loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None + loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None + if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: + network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) + + if block_lr_weight is not None: + network.set_block_lr_weight(block_lr_weight) return network @@ -501,9 +513,13 @@ def create_network( # block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている # conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている def get_block_dims_and_alphas( - block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha + is_sdxl, block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha ): - num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1 + if not is_sdxl: + num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + LoRANetwork.NUM_OF_MID_BLOCKS + else: + # 1+9+3+9+1=23, no LoRA for emb_layers (0) + num_total_blocks = 1 + LoRANetwork.SDXL_NUM_OF_BLOCKS * 2 + LoRANetwork.SDXL_NUM_OF_MID_BLOCKS + 1 def parse_ints(s): return [int(i) for i in s.split(",")] @@ -514,9 +530,10 @@ def parse_floats(s): # block_dimsとblock_alphasをパースする。必ず値が入る if block_dims is not None: block_dims = parse_ints(block_dims) - assert ( - len(block_dims) == num_total_blocks - ), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください" + assert len(block_dims) == num_total_blocks, ( + f"block_dims must have {num_total_blocks} elements but {len(block_dims)} elements are given" + + f" / block_dimsは{num_total_blocks}個指定してください(指定された個数: {len(block_dims)})" + ) else: logger.warning( f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります" @@ -567,15 +584,25 @@ def parse_floats(s): return block_dims, block_alphas, conv_block_dims, conv_block_alphas -# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく +# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出せるようにclass外に出しておく +# 戻り値は block ごとの倍率のリスト def get_block_lr_weight( - down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold -) -> Tuple[List[float], List[float], List[float]]: + is_sdxl, + down_lr_weight: Union[str, List[float]], + mid_lr_weight: List[float], + up_lr_weight: Union[str, List[float]], + zero_threshold: float, +) -> Optional[List[float]]: # パラメータ未指定時は何もせず、今までと同じ動作とする if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None: - return None, None, None + return None - max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数 + if not is_sdxl: + max_len_for_down_or_up = LoRANetwork.NUM_OF_BLOCKS + max_len_for_mid = LoRANetwork.NUM_OF_MID_BLOCKS + else: + max_len_for_down_or_up = LoRANetwork.SDXL_NUM_OF_BLOCKS + max_len_for_mid = LoRANetwork.SDXL_NUM_OF_MID_BLOCKS def get_list(name_with_suffix) -> List[float]: import math @@ -585,15 +612,18 @@ def get_list(name_with_suffix) -> List[float]: base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0 if name == "cosine": - return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))] + return [ + math.sin(math.pi * (i / (max_len_for_down_or_up - 1)) / 2) + base_lr + for i in reversed(range(max_len_for_down_or_up)) + ] elif name == "sine": - return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)] + return [math.sin(math.pi * (i / (max_len_for_down_or_up - 1)) / 2) + base_lr for i in range(max_len_for_down_or_up)] elif name == "linear": - return [i / (max_len - 1) + base_lr for i in range(max_len)] + return [i / (max_len_for_down_or_up - 1) + base_lr for i in range(max_len_for_down_or_up)] elif name == "reverse_linear": - return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))] + return [i / (max_len_for_down_or_up - 1) + base_lr for i in reversed(range(max_len_for_down_or_up))] elif name == "zeros": - return [0.0 + base_lr] * max_len + return [0.0 + base_lr] * max_len_for_down_or_up else: logger.error( "Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros" @@ -606,20 +636,36 @@ def get_list(name_with_suffix) -> List[float]: if type(up_lr_weight) == str: up_lr_weight = get_list(up_lr_weight) - if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len): - logger.warning("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len) - logger.warning("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len) - up_lr_weight = up_lr_weight[:max_len] - down_lr_weight = down_lr_weight[:max_len] + if (up_lr_weight != None and len(up_lr_weight) > max_len_for_down_or_up) or ( + down_lr_weight != None and len(down_lr_weight) > max_len_for_down_or_up + ): + logger.warning("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len_for_down_or_up) + logger.warning("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len_for_down_or_up) + up_lr_weight = up_lr_weight[:max_len_for_down_or_up] + down_lr_weight = down_lr_weight[:max_len_for_down_or_up] + + if mid_lr_weight != None and len(mid_lr_weight) > max_len_for_mid: + logger.warning("mid_weight is too long. Parameters after %d-th are ignored." % max_len_for_mid) + logger.warning("mid_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len_for_mid) + mid_lr_weight = mid_lr_weight[:max_len_for_mid] + + if (up_lr_weight != None and len(up_lr_weight) < max_len_for_down_or_up) or ( + down_lr_weight != None and len(down_lr_weight) < max_len_for_down_or_up + ): + logger.warning("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len_for_down_or_up) + logger.warning( + "down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len_for_down_or_up + ) - if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len): - logger.warning("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len) - logger.warning("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len) + if down_lr_weight != None and len(down_lr_weight) < max_len_for_down_or_up: + down_lr_weight = down_lr_weight + [1.0] * (max_len_for_down_or_up - len(down_lr_weight)) + if up_lr_weight != None and len(up_lr_weight) < max_len_for_down_or_up: + up_lr_weight = up_lr_weight + [1.0] * (max_len_for_down_or_up - len(up_lr_weight)) - if down_lr_weight != None and len(down_lr_weight) < max_len: - down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight)) - if up_lr_weight != None and len(up_lr_weight) < max_len: - up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight)) + if mid_lr_weight != None and len(mid_lr_weight) < max_len_for_mid: + logger.warning("mid_weight is too short. Parameters after %d-th are filled with 1." % max_len_for_mid) + logger.warning("mid_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len_for_mid) + mid_lr_weight = mid_lr_weight + [1.0] * (max_len_for_mid - len(mid_lr_weight)) if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None): logger.info("apply block learning rate / 階層別学習率を適用します。") @@ -627,72 +673,84 @@ def get_list(name_with_suffix) -> List[float]: down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight] logger.info(f"down_lr_weight (shallower -> deeper, 浅い層->深い層): {down_lr_weight}") else: + down_lr_weight = [1.0] * max_len_for_down_or_up logger.info("down_lr_weight: all 1.0, すべて1.0") if mid_lr_weight != None: - mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0 + mid_lr_weight = [w if w > zero_threshold else 0 for w in mid_lr_weight] logger.info(f"mid_lr_weight: {mid_lr_weight}") else: - logger.info("mid_lr_weight: 1.0") + mid_lr_weight = [1.0] * max_len_for_mid + logger.info("mid_lr_weight: all 1.0, すべて1.0") if up_lr_weight != None: up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight] logger.info(f"up_lr_weight (deeper -> shallower, 深い層->浅い層): {up_lr_weight}") else: + up_lr_weight = [1.0] * max_len_for_down_or_up logger.info("up_lr_weight: all 1.0, すべて1.0") - return down_lr_weight, mid_lr_weight, up_lr_weight + lr_weight = down_lr_weight + mid_lr_weight + up_lr_weight + + if is_sdxl: + lr_weight = [1.0] + lr_weight + [1.0] # add 1.0 for emb_layers and out + + assert (not is_sdxl and len(lr_weight) == LoRANetwork.NUM_OF_BLOCKS * 2 + LoRANetwork.NUM_OF_MID_BLOCKS) or ( + is_sdxl and len(lr_weight) == 1 + LoRANetwork.SDXL_NUM_OF_BLOCKS * 2 + LoRANetwork.SDXL_NUM_OF_MID_BLOCKS + 1 + ), f"lr_weight length is invalid: {len(lr_weight)}" + + return lr_weight # lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく def remove_block_dims_and_alphas( - block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight + is_sdxl, block_dims, block_alphas, conv_block_dims, conv_block_alphas, block_lr_weight: Optional[List[float]] ): - # set 0 to block dim without learning rate to remove the block - if down_lr_weight != None: - for i, lr in enumerate(down_lr_weight): + if block_lr_weight is not None: + for i, lr in enumerate(block_lr_weight): if lr == 0: block_dims[i] = 0 if conv_block_dims is not None: conv_block_dims[i] = 0 - if mid_lr_weight != None: - if mid_lr_weight == 0: - block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 - if conv_block_dims is not None: - conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 - if up_lr_weight != None: - for i, lr in enumerate(up_lr_weight): - if lr == 0: - block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 - if conv_block_dims is not None: - conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 - return block_dims, block_alphas, conv_block_dims, conv_block_alphas # 外部から呼び出す可能性を考慮しておく -def get_block_index(lora_name: str) -> int: +def get_block_index(lora_name: str, is_sdxl: bool = False) -> int: block_idx = -1 # invalid lora name - - m = RE_UPDOWN.search(lora_name) - if m: - g = m.groups() - i = int(g[1]) - j = int(g[3]) - if g[2] == "resnets": - idx = 3 * i + j - elif g[2] == "attentions": - idx = 3 * i + j - elif g[2] == "upsamplers" or g[2] == "downsamplers": - idx = 3 * i + 2 - - if g[0] == "down": - block_idx = 1 + idx # 0に該当するLoRAは存在しない - elif g[0] == "up": - block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx - - elif "mid_block_" in lora_name: - block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12 + if not is_sdxl: + m = RE_UPDOWN.search(lora_name) + if m: + g = m.groups() + i = int(g[1]) + j = int(g[3]) + if g[2] == "resnets": + idx = 3 * i + j + elif g[2] == "attentions": + idx = 3 * i + j + elif g[2] == "upsamplers" or g[2] == "downsamplers": + idx = 3 * i + 2 + + if g[0] == "down": + block_idx = 1 + idx # 0に該当するLoRAは存在しない + elif g[0] == "up": + block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx + elif "mid_block_" in lora_name: + block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12 + else: + # copy from sdxl_train + if lora_name.startswith("lora_unet_"): + name = lora_name[len("lora_unet_") :] + if name.startswith("time_embed_") or name.startswith("label_emb_"): # No LoRA + block_idx = 0 # 0 + elif name.startswith("input_blocks_"): # 1-9 + block_idx = 1 + int(name.split("_")[2]) + elif name.startswith("middle_block_"): # 10-12 + block_idx = 10 + int(name.split("_")[2]) + elif name.startswith("output_blocks_"): # 13-21 + block_idx = 13 + int(name.split("_")[2]) + elif name.startswith("out_"): # 22, out, no LoRA + block_idx = 22 return block_idx @@ -734,15 +792,18 @@ def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weigh ) # block lr - down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) - if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: - network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) + block_lr_weight = parse_block_lr_kwargs(kwargs) + if block_lr_weight is not None: + network.set_block_lr_weight(block_lr_weight) return network, weights_sd class LoRANetwork(torch.nn.Module): NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数 + NUM_OF_MID_BLOCKS = 1 + SDXL_NUM_OF_BLOCKS = 9 # SDXLのモデルでのinput/outputの層の数 total=1(base) 9(input) + 3(mid) + 9(output) + 1(out) = 23 + SDXL_NUM_OF_MID_BLOCKS = 3 UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] @@ -774,6 +835,7 @@ def __init__( modules_alpha: Optional[Dict[str, int]] = None, module_class: Type[object] = LoRAModule, varbose: Optional[bool] = False, + is_sdxl: Optional[bool] = False, ) -> None: """ LoRA network: すごく引数が多いが、パターンは以下の通り @@ -794,6 +856,10 @@ def __init__( self.rank_dropout = rank_dropout self.module_dropout = module_dropout + self.loraplus_lr_ratio = None + self.loraplus_unet_lr_ratio = None + self.loraplus_text_encoder_lr_ratio = None + if modules_dim is not None: logger.info(f"create LoRA network from weights") elif block_dims is not None: @@ -855,7 +921,7 @@ def create_modules( alpha = modules_alpha[lora_name] elif is_unet and block_dims is not None: # U-Netでblock_dims指定あり - block_idx = get_block_index(lora_name) + block_idx = get_block_index(lora_name, is_sdxl) if is_linear or is_conv2d_1x1: dim = block_dims[block_idx] alpha = block_alphas[block_idx] @@ -925,9 +991,7 @@ def create_modules( for name in skipped: logger.info(f"\t{name}") - self.up_lr_weight: List[float] = None - self.down_lr_weight: List[float] = None - self.mid_lr_weight: float = None + self.block_lr_weight = None self.block_lr = False # assertion @@ -958,12 +1022,12 @@ def load_weights(self, file): def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): if apply_text_encoder: - logger.info("enable LoRA for text encoder") + logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") else: self.text_encoder_loras = [] if apply_unet: - logger.info("enable LoRA for U-Net") + logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") else: self.unet_loras = [] @@ -1004,81 +1068,114 @@ def merge_to(self, text_encoder, unet, weights_sd, dtype, device): logger.info(f"weights are merged") # 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない - def set_block_lr_weight( - self, - up_lr_weight: List[float] = None, - mid_lr_weight: float = None, - down_lr_weight: List[float] = None, - ): + def set_block_lr_weight(self, block_lr_weight: Optional[List[float]]): self.block_lr = True - self.down_lr_weight = down_lr_weight - self.mid_lr_weight = mid_lr_weight - self.up_lr_weight = up_lr_weight - - def get_lr_weight(self, lora: LoRAModule) -> float: - lr_weight = 1.0 - block_idx = get_block_index(lora.lora_name) - if block_idx < 0: - return lr_weight - - if block_idx < LoRANetwork.NUM_OF_BLOCKS: - if self.down_lr_weight != None: - lr_weight = self.down_lr_weight[block_idx] - elif block_idx == LoRANetwork.NUM_OF_BLOCKS: - if self.mid_lr_weight != None: - lr_weight = self.mid_lr_weight - elif block_idx > LoRANetwork.NUM_OF_BLOCKS: - if self.up_lr_weight != None: - lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1] - - return lr_weight + self.block_lr_weight = block_lr_weight + + def get_lr_weight(self, block_idx: int) -> float: + if not self.block_lr or self.block_lr_weight is None: + return 1.0 + return self.block_lr_weight[block_idx] + + def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): + self.loraplus_lr_ratio = loraplus_lr_ratio + self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio + self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio # 二つのText Encoderに別々の学習率を設定できるようにするといいかも def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): + # TODO warn if optimizer is not compatible with LoRA+ (but it will cause error so we don't need to check it here?) + # if ( + # self.loraplus_lr_ratio is not None + # or self.loraplus_text_encoder_lr_ratio is not None + # or self.loraplus_unet_lr_ratio is not None + # ): + # assert ( + # optimizer_type.lower() != "prodigy" and "dadapt" not in optimizer_type.lower() + # ), "LoRA+ and Prodigy/DAdaptation is not supported / LoRA+とProdigy/DAdaptationの組み合わせはサポートされていません" + self.requires_grad_(True) + all_params = [] + lr_descriptions = [] - def enumerate_params(loras): - params = [] + def assemble_params(loras, lr, ratio): + param_groups = {"lora": {}, "plus": {}} for lora in loras: - params.extend(lora.parameters()) - return params + for name, param in lora.named_parameters(): + if ratio is not None and "lora_up" in name: + param_groups["plus"][f"{lora.lora_name}.{name}"] = param + else: + param_groups["lora"][f"{lora.lora_name}.{name}"] = param + + params = [] + descriptions = [] + for key in param_groups.keys(): + param_data = {"params": param_groups[key].values()} + + if len(param_data["params"]) == 0: + continue + + if lr is not None: + if key == "plus": + param_data["lr"] = lr * ratio + else: + param_data["lr"] = lr + + if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: + logger.info("NO LR skipping!") + continue + + params.append(param_data) + descriptions.append("plus" if key == "plus" else "") + + return params, descriptions if self.text_encoder_loras: - param_data = {"params": enumerate_params(self.text_encoder_loras)} - if text_encoder_lr is not None: - param_data["lr"] = text_encoder_lr - all_params.append(param_data) + params, descriptions = assemble_params( + self.text_encoder_loras, + text_encoder_lr if text_encoder_lr is not None else default_lr, + self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio, + ) + all_params.extend(params) + lr_descriptions.extend(["textencoder" + (" " + d if d else "") for d in descriptions]) if self.unet_loras: if self.block_lr: + is_sdxl = False + for lora in self.unet_loras: + if "input_blocks" in lora.lora_name or "output_blocks" in lora.lora_name: + is_sdxl = True + break + # 学習率のグラフをblockごとにしたいので、blockごとにloraを分類 block_idx_to_lora = {} for lora in self.unet_loras: - idx = get_block_index(lora.lora_name) + idx = get_block_index(lora.lora_name, is_sdxl) if idx not in block_idx_to_lora: block_idx_to_lora[idx] = [] block_idx_to_lora[idx].append(lora) # blockごとにパラメータを設定する for idx, block_loras in block_idx_to_lora.items(): - param_data = {"params": enumerate_params(block_loras)} - - if unet_lr is not None: - param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0]) - elif default_lr is not None: - param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0]) - if ("lr" in param_data) and (param_data["lr"] == 0): - continue - all_params.append(param_data) + params, descriptions = assemble_params( + block_loras, + (unet_lr if unet_lr is not None else default_lr) * self.get_lr_weight(idx), + self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio, + ) + all_params.extend(params) + lr_descriptions.extend([f"unet_block{idx}" + (" " + d if d else "") for d in descriptions]) else: - param_data = {"params": enumerate_params(self.unet_loras)} - if unet_lr is not None: - param_data["lr"] = unet_lr - all_params.append(param_data) + params, descriptions = assemble_params( + self.unet_loras, + unet_lr if unet_lr is not None else default_lr, + self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio, + ) + all_params.extend(params) + lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) - return all_params + return all_params, lr_descriptions def enable_gradient_checkpointing(self): # not supported diff --git a/train_network.py b/train_network.py index aad5a7194..feb455cea 100644 --- a/train_network.py +++ b/train_network.py @@ -53,7 +53,15 @@ def __init__(self): # TODO 他のスクリプトと共通化する def generate_step_logs( - self, args: argparse.Namespace, current_loss, avr_loss, lr_scheduler, keys_scaled=None, mean_norm=None, maximum_norm=None + self, + args: argparse.Namespace, + current_loss, + avr_loss, + lr_scheduler, + lr_descriptions, + keys_scaled=None, + mean_norm=None, + maximum_norm=None, ): logs = {"loss/current": current_loss, "loss/average": avr_loss} @@ -63,34 +71,26 @@ def generate_step_logs( logs["max_norm/max_key_norm"] = maximum_norm lrs = lr_scheduler.get_last_lr() - - if args.network_train_text_encoder_only or len(lrs) <= 2: # not block lr (or single block) - if args.network_train_unet_only: - logs["lr/unet"] = float(lrs[0]) - elif args.network_train_text_encoder_only: - logs["lr/textencoder"] = float(lrs[0]) + for i, lr in enumerate(lrs): + if lr_descriptions is not None: + lr_desc = lr_descriptions[i] else: - logs["lr/textencoder"] = float(lrs[0]) - logs["lr/unet"] = float(lrs[-1]) # may be same to textencoder - - if ( - args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower() - ): # tracking d*lr value of unet. - logs["lr/d*lr"] = ( - lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] + idx = i - (0 if args.network_train_unet_only else -1) + if idx == -1: + lr_desc = "textencoder" + else: + if len(lrs) > 2: + lr_desc = f"group{idx}" + else: + lr_desc = "unet" + + logs[f"lr/{lr_desc}"] = lr + + if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): + # tracking d*lr value + logs[f"lr/d*lr/{lr_desc}"] = ( + lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] ) - else: - idx = 0 - if not args.network_train_unet_only: - logs["lr/textencoder"] = float(lrs[0]) - idx = 1 - - for i in range(idx, len(lrs)): - logs[f"lr/group{i}"] = float(lrs[i]) - if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): - logs[f"lr/d*lr/group{i}"] = ( - lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] - ) return logs @@ -323,6 +323,7 @@ def train(self, args): network.apply_to(text_encoder, unet, train_text_encoder, train_unet) if args.network_weights is not None: + # FIXME consider alpha of weights info = network.load_weights(args.network_weights) accelerator.print(f"load network weights from {args.network_weights}: {info}") @@ -338,12 +339,30 @@ def train(self, args): # 後方互換性を確保するよ try: - trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr, args.learning_rate) - except TypeError: - accelerator.print( - "Deprecated: use prepare_optimizer_params(text_encoder_lr, unet_lr, learning_rate) instead of prepare_optimizer_params(text_encoder_lr, unet_lr)" - ) + results = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr, args.learning_rate) + if type(results) is tuple: + trainable_params = results[0] + lr_descriptions = results[1] + else: + trainable_params = results + lr_descriptions = None + except TypeError as e: + # logger.warning(f"{e}") + # accelerator.print( + # "Deprecated: use prepare_optimizer_params(text_encoder_lr, unet_lr, learning_rate) instead of prepare_optimizer_params(text_encoder_lr, unet_lr)" + # ) trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr) + lr_descriptions = None + + # if len(trainable_params) == 0: + # accelerator.print("no trainable parameters found / 学習可能なパラメータが見つかりませんでした") + # for params in trainable_params: + # for k, v in params.items(): + # if type(v) == float: + # pass + # else: + # v = len(v) + # accelerator.print(f"trainable_params: {k} = {v}") optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params) @@ -952,7 +971,9 @@ def remove_model(old_ckpt_name): progress_bar.set_postfix(**{**max_mean_logs, **logs}) if args.logging_dir is not None: - logs = self.generate_step_logs(args, current_loss, avr_loss, lr_scheduler, keys_scaled, mean_norm, maximum_norm) + logs = self.generate_step_logs( + args, current_loss, avr_loss, lr_scheduler, lr_descriptions, keys_scaled, mean_norm, maximum_norm + ) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: @@ -1103,6 +1124,9 @@ def setup_parser() -> argparse.ArgumentParser: action="store_true", help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", ) + # parser.add_argument("--loraplus_lr_ratio", default=None, type=float, help="LoRA+ learning rate ratio") + # parser.add_argument("--loraplus_unet_lr_ratio", default=None, type=float, help="LoRA+ UNet learning rate ratio") + # parser.add_argument("--loraplus_text_encoder_lr_ratio", default=None, type=float, help="LoRA+ text encoder learning rate ratio") return parser