forked from stefanklut/laypa
-
Notifications
You must be signed in to change notification settings - Fork 1
/
visualization.py
298 lines (249 loc) · 12.3 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse
import logging
import random
import sys
from functools import lru_cache
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from detectron2.utils.visualizer import Visualizer
from natsort import os_sorted
from tqdm import tqdm
sys.path.append(str(Path(__file__).resolve().parent.joinpath("..")))
from core.setup import setup_cfg
from data.dataset import metadata_from_classes
from data.mapper import AugInput
from page_xml.xml_converter import XMLConverter
from run import Predictor
from utils.image_utils import load_image_array_from_path, save_image_array_to_path
from utils.input_utils import get_file_paths, supported_image_formats
from utils.logging_utils import get_logger_name
from utils.path_utils import image_path_to_xml_path
from utils.tempdir import OptionalTemporaryDirectory
logger = logging.getLogger(get_logger_name())
def get_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Visualization of prediction/GT of model")
detectron2_args = parser.add_argument_group("detectron2")
detectron2_args.add_argument("-c", "--config", help="config file", required=True)
detectron2_args.add_argument("--opts", nargs="+", help="optional args to change", action="extend", default=[])
io_args = parser.add_argument_group("IO")
# io_args.add_argument("-t", "--train", help="Train input folder/file",
# nargs="+", action="extend", type=str, default=None)
io_args.add_argument("-i", "--input", help="Input folder/file", nargs="+", action="extend", type=str, default=None)
io_args.add_argument("-o", "--output", help="Output folder", type=str)
tmp_args = parser.add_argument_group("tmp files")
tmp_args.add_argument("--tmp_dir", help="Temp files folder", type=str, default=None)
tmp_args.add_argument("--keep_tmp_dir", action="store_true", help="Don't remove tmp dir after execution")
parser.add_argument("--sorted", action="store_true", help="Sorted iteration")
parser.add_argument("--save", nargs="?", const="all", default=None, help="Save images instead of displaying")
args = parser.parse_args()
return args
_keypress_result = None
def keypress(event):
global _keypress_result
# print('press', event.key)
if event.key in ["q", "escape"]:
sys.exit()
if event.key in [" ", "right"]:
_keypress_result = "forward"
return
if event.key in ["backspace", "left"]:
_keypress_result = "back"
return
if event.key in ["e", "delete"]:
_keypress_result = "delete"
return
if event.key in ["w"]:
_keypress_result = "bad"
return
def on_close(event):
sys.exit()
def main(args) -> None:
"""
Currently running the validation set and showing the ground truth and the prediction side by side
Args:
args (argparse.Namespace): arguments for where to find the images
"""
if args.save and not args.output:
raise ValueError("Cannot run saving when there is not save location given (--output)")
# Setup config
cfg = setup_cfg(args)
with OptionalTemporaryDirectory(name=args.tmp_dir, cleanup=not args.keep_tmp_dir) as tmp_dir:
# preprocess_datasets(cfg, None, args.input, tmp_dir, save_image_locations=False)
xml_converter = XMLConverter(cfg)
metadata = metadata_from_classes(xml_converter.xml_regions.regions)
image_paths = get_file_paths(args.input, supported_image_formats, cfg.PREPROCESS.DISABLE_CHECK)
predictor = Predictor(cfg=cfg)
@lru_cache(maxsize=10)
def load_image(path):
data = load_image_array_from_path(path, mode="color")
if data is None:
raise TypeError(f"Image {path} is None, loading failed")
image = data["image"]
dpi = data["dpi"]
return image, dpi
@lru_cache(maxsize=10)
def create_gt_visualization(image_path):
xml_path = image_path_to_xml_path(image_path, check=False)
if not xml_path.is_file():
return None
image, dpi = load_image(image_path)
data = AugInput(
image,
dpi=dpi,
auto_dpi=cfg.INPUT.DPI.AUTO_DETECT_TEST,
default_dpi=cfg.INPUT.DPI.DEFAULT_DPI_TEST,
manual_dpi=cfg.INPUT.DPI.MANUAL_DPI_TEST,
)
transforms = predictor.aug(data)
if image is None:
raise ValueError("image can not be None")
sem_seg_gt = xml_converter.to_sem_seg(xml_path, image_shape=(data.image.shape[0], data.image.shape[1]))
vis_im_gt = Visualizer(data.image.copy(), metadata=metadata, scale=1)
vis_im_gt = vis_im_gt.draw_sem_seg(sem_seg_gt, alpha=0.4)
return vis_im_gt.get_image()
@lru_cache(maxsize=10)
def create_pred_visualization(image_path):
image, dpi = load_image(image_path)
data = AugInput(
image,
dpi=dpi,
auto_dpi=cfg.INPUT.DPI.AUTO_DETECT_TEST,
default_dpi=cfg.INPUT.DPI.DEFAULT_DPI_TEST,
manual_dpi=cfg.INPUT.DPI.MANUAL_DPI_TEST,
)
logger.info(f"Predict: {image_path}")
outputs = predictor(data)
sem_seg = outputs[0]["sem_seg"]
sem_seg = torch.nn.functional.interpolate(
sem_seg[None], size=(image.shape[0], image.shape[1]), mode="bilinear", align_corners=False
)[0]
sem_seg = torch.argmax(sem_seg, dim=-3).cpu().numpy()
# outputs["panoptic_seg"] = (outputs["panoptic_seg"][0].to("cpu"),
# outputs["panoptic_seg"][1])
vis_im = Visualizer(image.copy(), metadata=metadata, scale=1)
vis_im = vis_im.draw_sem_seg(sem_seg, alpha=0.4)
return vis_im.get_image()
# for i, inputs in enumerate(np.random.choice(val_loader, 3)):
if args.sorted:
loader = os_sorted(image_paths)
else:
loader = image_paths
random.shuffle(image_paths)
bad_results = np.zeros(len(loader), dtype=bool)
delete_results = np.zeros(len(loader), dtype=bool)
if args.save:
for image_path in tqdm(image_paths, desc="Saving Images"):
vis_gt = None
vis_pred = None
if args.save not in ["all", "both", "pred", "gt"]:
raise ValueError(f"{args.save} is not a valid save mode")
if args.save != "pred":
vis_gt = create_gt_visualization(image_path)
if args.save != "gt":
vis_pred = create_pred_visualization(image_path)
output_dir = Path(args.output)
if not output_dir.is_dir():
logger.info(f"Could not find output dir ({output_dir}), creating one at specified location")
output_dir.mkdir(parents=True)
if args.save in ["all", "both"]:
save_path = output_dir.joinpath(image_path.stem + "_both.jpg")
if vis_gt is not None and vis_pred is not None:
vis_gt = cv2.resize(vis_gt, (vis_pred.shape[1], vis_pred.shape[0]), interpolation=cv2.INTER_CUBIC)
save_image_array_to_path(save_path, np.hstack((vis_pred, vis_gt)))
if args.save in ["all", "pred"]:
if vis_pred is not None:
save_path = output_dir.joinpath(image_path.stem + "_pred.jpg")
save_image_array_to_path(save_path, vis_pred)
if args.save in ["all", "gt"]:
if vis_gt is not None:
save_path = output_dir.joinpath(image_path.stem + "_gt.jpg")
save_image_array_to_path(save_path, vis_gt)
else:
fig, axes = plt.subplots(1, 2)
fig.tight_layout()
fig.canvas.mpl_connect("key_press_event", keypress)
fig.canvas.mpl_connect("close_event", on_close)
axes[0].axis("off")
axes[1].axis("off")
fig_manager = plt.get_current_fig_manager()
if fig_manager is None:
raise ValueError("Could not find figure manager")
fig_manager.window.showMaximized()
i = 0
while 0 <= i < len(loader):
image_path = loader[i]
vis_gt = create_gt_visualization(image_path)
vis_pred = create_pred_visualization(image_path)
# pano_gt = torch.IntTensor(rgb2id(cv2.imread(inputs["pan_seg_file_name"], cv2.IMREAD_COLOR)))
# print(inputs["segments_info"])
# vis_im = vis_im.draw_panoptic_seg(outputs["panoptic_seg"][0], outputs["panoptic_seg"][1])
# vis_im_gt = vis_im_gt.draw_panoptic_seg(pano_gt, [item | {"isthing": True} for item in inputs["segments_info"]])
fig_manager.window.setWindowTitle(str(image_path))
# HACK Just remove the previous axes, I can't find how to resize the image otherwise
axes[0].clear()
axes[1].clear()
axes[0].axis("off")
axes[1].axis("off")
if vis_pred is not None:
axes[0].imshow(vis_pred)
if vis_gt is not None:
axes[1].imshow(vis_gt)
if delete_results[i]:
fig.suptitle("Delete")
elif bad_results[i]:
fig.suptitle("Bad")
else:
fig.suptitle("")
# f.title(inputs["file_name"])
global _keypress_result
_keypress_result = None
fig.canvas.draw()
while _keypress_result is None:
plt.waitforbuttonpress()
if _keypress_result == "delete":
# print(i+1, f"{inputs['original_file_name']}: DELETE")
delete_results[i] = not delete_results[i]
bad_results[i] = False
elif _keypress_result == "bad":
# print(i+1, f"{inputs['original_file_name']}: BAD")
bad_results[i] = not bad_results[i]
delete_results[i] = False
elif _keypress_result == "forward":
# print(i+1, f"{inputs['original_file_name']}")
i += 1
elif _keypress_result == "back":
# print(i+1, f"{inputs['original_file_name']}: DELETE")
i -= 1
if args.output and (delete_results.any() or bad_results.any()):
output_dir = Path(args.output)
if not output_dir.is_dir():
logger.info(f"Could not find output dir ({output_dir}), creating one at specified location")
output_dir.mkdir(parents=True)
if delete_results.any():
output_delete = output_dir.joinpath("delete.txt")
with output_delete.open(mode="w") as f:
for i in delete_results.nonzero()[0]:
path = Path(loader[i]["original_file_name"])
line = path.relative_to(output_dir) if path.is_relative_to(output_dir) else path.resolve()
f.write(f"{line}\n")
if bad_results.any():
output_bad = output_dir.joinpath("bad.txt")
with output_bad.open(mode="w") as f:
for i in bad_results.nonzero()[0]:
path = Path(loader[i]["original_file_name"])
line = path.relative_to(output_dir) if path.is_relative_to(output_dir) else path.resolve()
f.write(f"{line}\n")
remaining_results = np.logical_not(np.logical_or(bad_results, delete_results))
if remaining_results.any():
output_remaining = output_dir.joinpath("correct.txt")
with output_remaining.open(mode="w") as f:
for i in remaining_results.nonzero()[0]:
path = Path(loader[i]["original_file_name"])
line = path.relative_to(output_dir) if path.is_relative_to(output_dir) else path.resolve()
f.write(f"{line}\n")
if __name__ == "__main__":
args = get_arguments()
main(args)