Skip to content

Latest commit

 

History

History
140 lines (110 loc) · 2.91 KB

README.md

File metadata and controls

140 lines (110 loc) · 2.91 KB

ProppModel

ProppModel source:

http://www.feb-web.ru/feb/skazki/default.asp?/feb/skazki/texts/af0/af0.html + Google translate

Another: https://github.com/kingfish777/central_corpora/tree/master/AFAN/Afan_Eng

Clean AFAN:

https://github.com/kingfish777/central_corpora/tree/master/AFAN

r e c u r s i v e
n a t u r e o f s o l u t i o n o f t h e m a t h e m a t i c a l p r o b l e m o f n a t u r a l l a n g u a g e

a t e a c h l e v e l s o l u t i o n i s a r g u a b l y i s o m o r p h i c w i t h s o l u t i o n o f l e v e l s b o t h a b o v e a n d b e l o w i t

f r o m p h o n e m e t o m o r p h e m e t o c o m b i n a t o r i c s
o f n o m i n a l o r v e r b a l c l a u s e s t o f o r m u l a i c r e u s e o f r e c u r r i n g e l e m e n t s a t l e v e l a b o v e s e n t e n c e w h i c h w e r e f e r t o a s f o r m u l a i t y o r ( d e p e n d i n g o n c o n t e x t ) m y t h, a s e x p l o i t e d b y j a m e s j o y c e a n d t h o m a s m a n n j u s t t o n a m e
a f e w f r o m t h e l a s t c e n t - u r y.


SQL: http://www.r-bloggers.com/databases-for-text-analysis-archive-and-access-texts-using-sql/

Red Dwarf: http://www.r-bloggers.com/what-the-smeg-some-text-analysis-of-the-red-dwarf-scripts/

Text Processing: http://en.wikibooks.org/wiki/R_Programming/Text_Processing

qdap: http://trinkerrstuff.wordpress.com/2012/10/04/presidential-debates-with-qdap-beta/

structured exploration: http://www.r-bloggers.com/igraph-and-structured-text-exploration/

Stemming: http://www.r-bloggers.com/help-stemming-and-stem-completion-with-package-tm-in-r/

Mapping text: http://www.r-bloggers.com/simple-data-mining-and-plotting-data-on-a-map-with-ggplot2/

Topic Modeling and Salience(!!!): http://www.r-bloggers.com/topic-modeling-in-r/

clean text: http://www.r-bloggers.com/automatic-cleaning-of-messy-text-data/

Born to run lyrics analysis: http://www.r-bloggers.com/automatic-cleaning-of-messy-text-data/

http://www.rtexttools.com/

minimizing size of weight-vector in SVM ... higher weights on the edges (despite centroid-like form) and SVM is all about the weights: https://www.youtube.com/watch?v=A7FeQekjd9Q

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/SVM

http://www.cs.cornell.edu/people/tj/publications/joachims_97b.pdf

SVM in R: http://www.jstatsoft.org/v15/i09/paper

text CATEGORIZATION (classification into pre-determined number categories): http://www.cs.iastate.edu/~honavar/text-classification-SVM.pdf

https://books.google.com/books?id=yVN64AACjMAC&pg=PA173&lpg=PA173&dq=storm+knight+afanas%27ev&source=bl&ots=Jool8ZxLvh&sig=lajZVJQAKbvzs2wOtdt5PLpZBHk&hl=en&sa=X&ei=X8z0VIrtLJb_sAT5mYGwBQ&ved=0CDQQ6AEwBQ#v=onepage&q=storm%20knight%20afanas%27ev&f=false