-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
155 lines (121 loc) · 5.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import importlib.metadata
import torch
import logging
from scipy.interpolate import PchipInterpolator
import numpy as np
import cv2
from PIL import Image
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
def check_diffusers_version():
try:
version = importlib.metadata.version('diffusers')
required_version = '0.31.0'
if version < required_version:
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
except importlib.metadata.PackageNotFoundError:
raise AssertionError("diffusers is not installed.")
def print_memory(device):
memory = torch.cuda.memory_allocated(device) / 1024**3
max_memory = torch.cuda.max_memory_allocated(device) / 1024**3
max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3
log.info(f"Allocated memory: {memory=:.3f} GB")
log.info(f"Max allocated memory: {max_memory=:.3f} GB")
log.info(f"Max reserved memory: {max_reserved=:.3f} GB")
#memory_summary = torch.cuda.memory_summary(device=device, abbreviated=False)
#log.info(f"Memory Summary:\n{memory_summary}")
def interpolate_trajectory(points, n_points):
x = [point[0] for point in points]
y = [point[1] for point in points]
t = np.linspace(0, 1, len(points))
# fx = interp1d(t, x, kind='cubic')
# fy = interp1d(t, y, kind='cubic')
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
new_t = np.linspace(0, 1, n_points)
new_x = fx(new_t)
new_y = fy(new_t)
new_points = list(zip(new_x, new_y))
return new_points
def gen_gaussian_heatmap(imgSize=200):
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize // 2, imgSize // 2), imgSize // 2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = (
1
/ 2
/ np.pi
/ (40**2)
* np.exp(-1 / 2 * ((i - imgSize / 2) ** 2 / (40**2) + (j - imgSize / 2) ** 2 / (40**2)))
)
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage) * 255).astype(np.uint8)
return isotropicGrayscaleImage
def get_vis_image(
target_size=(512, 512),
points=None,
side=20,
num_frames=14,
# original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
):
# images = []
vis_images = []
heatmap = gen_gaussian_heatmap()
trajectory_list = []
radius_list = []
for index, point in enumerate(points):
trajectories = [[int(i[0]), int(i[1])] for i in point]
trajectory_list.append(trajectories)
radius = 10
radius_list.append(radius)
if len(trajectory_list) == 0:
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
return vis_images
for idxx, point in enumerate(trajectory_list[0]):
new_img = np.zeros(target_size, np.uint8)
vis_img = new_img.copy()
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
if idxx >= num_frames:
break
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
center_coordinate = trajectory[idxx]
trajectory_ = trajectory[:idxx]
side = min(radius, 50)
y1 = max(center_coordinate[1] - side, 0)
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
x1 = max(center_coordinate[0] - side, 0)
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
if x2 - x1 > 3 and y2 - y1 > 3:
need_map = cv2.resize(heatmap, (x2 - x1, y2 - y1))
new_img[y1:y2, x1:x2] = need_map.copy()
if cc >= 0:
vis_img[y1:y2, x1:x2] = need_map.copy()
if len(trajectory_) == 1:
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
else:
for itt in range(len(trajectory_) - 1):
cv2.line(
vis_img,
(trajectory_[itt][0], trajectory_[itt][1]),
(trajectory_[itt + 1][0], trajectory_[itt + 1][1]),
(255, 255, 255),
3,
)
img = new_img
# Ensure all images are in RGB format
if len(img.shape) == 2: # Grayscale image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB)
#vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET)
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
# Convert the numpy array to a PIL image
# pil_img = Image.fromarray(img)
# images.append(pil_img)
vis_images.append(vis_img)
return vis_images