-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw8.tex
executable file
·130 lines (117 loc) · 5.99 KB
/
hw8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\documentclass{homework}
\title{Homework 8}
\author{Kevin Evans}
\studentid{11571810}
\date{March 31, 2021}
\setclass{Physics}{342}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{mhchem}
\usepackage{calligra}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
\newcommand{\scriptr}{\mathcalligra{r}\,}
\newcommand{\boldscriptr}{\pmb{\mathcalligra{r}}\,}
\newcommand{\emf}{\mathcal{E}}
\begin{document}
\maketitle
\begin{enumerate}
\item Not sure if it's better to do this problem in Cartesian or cylindrical coordinates, so... in Cartesian coordinates, the trajectory is a circle on the $xy$ plane \begin{align*}
\bvec{w} & = a \cos(\omega t) \uvec{x} + a\sin(\omega t) \uvec{y}
\intertext{The Li\'enard-Wiechert scalar potential is}
V(\bvec{r}, t) & = \frac{1}{4 \pi \epsilon_0 } \frac{qc}{\scriptr c - \boldscriptr \cdot \bvec{v}}
\intertext{However the displacement vector $\boldscriptr$ is always perpendicular to $\uvec{\phi}$, so the dot product part is zero. Then we are left with }
V & = \frac{1}{4 \pi \epsilon_0} \frac{q}{\left(z^2 + a^2(\cos[2](\omega t_r) + \sin[2](\omega t_r))\right)^{1/2}} \\
& = \frac{q}{4 \pi \epsilon_0 \sqrt{z^2 + a^2}}
\intertext{From eq. (10.47), the vector potential is}
\bvec{A}(\bvec{r}, t) & = \frac{\bvec{v}}{c^2} V \\
& = \frac{ a \omega }{c^2} \frac{q}{4 \pi \epsilon_0 \sqrt{z^2 + a^2}} \uvec{\phi}
% \intertext{Then the displacement vector is}
% \boldscriptr & = \bvec{r} - \bvec{w}(t_r) \\
% & = z \uvec{z} - a\left[ \cos(\omega t_r) \uvec{z} + \sin(\omega t_r) \uvec{y} \right]
\end{align*}
\item Given the trajectory \begin{align*}
\bvec{w}(t) & = \sqrt{b^2 + (ct)^2} \uvec{x}
\intertext{The retarded time can be determined as}
\abs{ \bvec{r} - \bvec{w}(t_r) } & = c (t - t_r) \\
\sqrt{ x^2 + b^2 + (ct_r)^2 } & = c (t - t_r)
\intertext{Using WolframAlpha to do algebra and solve for $t_r$,}
t_r & = -\frac{ b^2 + (ct)^2 - x^2 }{2 c^2 t}
\end{align*}
\item From eq. (10.72), the electric field is described by \begin{align*}
\bvec{E} & = \frac{q}{4 \pi \epsilon_0} \frac{\scriptr}{(\boldscriptr \cdot \bvec{u})^3} \left[
(c^2 - v^2) \bvec{u}
+ \boldscriptr \cross (\bvec{u} \cross \bvec{a})
\right]
\intertext{As $\boldscriptr \parallel \bvec{u}$ on $\uvec{x}$, we can reduce this expression to}
\bvec{E} & = \frac{q}{4 \pi \epsilon_0} \frac{1}{\scriptr^2 {u}^2} \left[
(c^2 - v^2)
\right] \uvec{x} \\
& = \frac{q}{4 \pi \epsilon_0} \frac{1}{\scriptr^2 (c - v)^2} \left[
(c + v)(c - v)
\right] \uvec{x} \\
& = \frac{q}{4 \pi \epsilon_0} \frac{(c+v)}{\scriptr^2 (c - v)} \uvec{x} \qed
\end{align*}
For the magnetic field, it must be zero as $\boldscriptr \parallel \uvec{x} \implies \hat{\boldscriptr} \cross \bvec{E} = 0$.
\item \begin{enumerate}
\item We can rewrite a little bit of charge as $\dd{q} = \lambda \dd{x}$ and $\sin \theta = d / R$, then \begin{align*}
\bvec{E} & = \int \frac{\lambda \dd{x}}{4 \pi \epsilon_0} \frac{1-v^2/c^2}{(1-v^2 \sin[2] (\theta )/ c^2)^{3/2}} \frac{\uvec{R}}{R^2}
\intertext{As $\cos \theta = x / R \implies \dd{x} = -R \sin \theta \dd{\theta}$ and since it is symmetric in $x$,}
& = -\frac{\lambda }{4 \pi \epsilon_0} \int \frac{1-v^2/c^2}{(1-v^2 \sin^2 \theta / c^2)^{3/2}} \frac{1}{R^2} R \sin \theta \dd{\theta} \uvec{s} \\
& = -\frac{\lambda }{4 \pi \epsilon_0} \int \frac{1-v^2/c^2}{(1-v^2 \sin \theta / c^2)^{3/2}} \frac{\sin \theta}{d} \sin \theta \dd{\theta} \uvec{s} \\
& = -\frac{\lambda }{4 \pi \epsilon_0 d} \int_0^\pi \frac{1-v^2/c^2}{(1-v^2 \sin^2 \theta / c^2)^{3/2}} \sin^2 (\theta) \dd{\theta} \uvec{s} \\
& = ?
\end{align*}
Can't seem to solve this easily and WolframAlpha isn't able to solve this either...
\item The magnetic field is \begin{align*}
\bvec{B} & = \frac{1}{c^2} \bvec{v} \cross \bvec{E} \\
& = -\frac{\lambda }{4 \pi \epsilon_0 d} \uvec{\theta} \int_0^\pi \left(\dots\right) \dd{\theta}
\end{align*}
\end{enumerate}
\item As it's moving with a constant angular velocity $\omega$, then \begin{align*}
\boldscriptr & = a \uvec{s} \\
\bvec{u} & = c \hat{\boldscriptr} - \bvec{v} = c \uvec{s} - \omega a \uvec{\phi}
\end{align*}
From eq. (10.72), the electric field is \begin{align*}
\bvec{E}(\bvec{r}, t) & = \frac{q}{4 \pi \epsilon_0} \frac{\scriptr}{(\bvec{r} \cdot \bvec{u})^3} \left[
(c^2 - v^2) \bvec{u} + \boldscriptr \cross (\bvec{u} \cross \bvec{a})
\right] \\
& = \frac{q}{4 \pi \epsilon_0} \frac{a}{(ac)^3} \left[
(c^2 - v^2) (c \uvec{s} - \omega a \uvec{\phi})
+ a \uvec{s} \cross \left(-\frac{(a \omega)^3}{a} \uvec{z}\right)
\right] \\
& = \frac{q}{4 \pi \epsilon_0} \frac{a}{(ac)^3} \left[
(c^2 - \omega^2 a^2) (c \uvec{s} - \omega a \uvec{\phi})
+ (\omega a)^3 \uvec{\phi}
\right] \\
& = \frac{q}{4 \pi \epsilon_0} \left[
\uvec{s}
+
\frac{2a^2 \omega^3 - c^2 \omega}{ac^3} \uvec{\phi}
\right]
\end{align*}
The magnetic field is given by eq. (10.73), \begin{align*}
\bvec{B}(\bvec{r}, t) & = \frac{1}{c} \boldscriptr \cross \bvec{E} \\
& = \frac{q \omega }{4 \pi \epsilon_0 c^4} \left[ 2a^3 - c^2 \right] \uvec{z}
\end{align*}
For a current $I$ going around a loop of circumference $2 \pi a$, the moving charge equivalent is $q\omega = 2 \pi I$. The magnetic field can then be written as \begin{align*}
\bvec{B} & = \frac{I}{2 \epsilon_0 c^4} \left(2 a^3 - c^2\right) \uvec{z}
\end{align*}
\end{enumerate}
\end{document}