-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw6.tex
executable file
·206 lines (190 loc) · 7.77 KB
/
hw6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\documentclass{homework}
\title{Homework 6}
\author{Kevin Evans}
\studentid{11571810}
\date{March 15, 2021}
\setclass{Physics}{342}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{calligra}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
\newcommand{\scriptr}{\mathcalligra{r}\,}
\newcommand{\boldscriptr}{\pmb{\mathcalligra{r}}\,}
\newcommand{\emf}{\mathcal{E}}
\begin{document}
\maketitle
\begin{enumerate}
\item \begin{enumerate}
\item The reflection and transmission coefficients are given by (9.86) and (9.87) respectively as \begin{align*}
R & = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 \\
& \approx 0.05 \\
T & = \left(\frac{4n_1 n_2}{(n_1 + n_2)^2}\right) \\
& \approx 0.95
\end{align*}
\item At Brewster's angle, $r = 0$, and from Fresnel's equations, \begin{align*}
\alpha & = \beta \\
\implies n_1 \cos(\theta_T) & = n_2 \cos(\theta_I)
\intertext{By Snell's law,}
\cos(\theta_I) & = \frac{n_1}{n_2} \cos(\arcsin(\frac{n_1}{n_2} \sin \theta_I))
\intertext{Plugging this into WolframAlpha and solving for $\theta_I$,}
\theta_B & = \arccos( \frac{n_1}{\sqrt{n_1^2 + n_2^2}} ) \\
& \approx \SI{0.998}{\radian} \approx \SI{57.2}{\deg}
\end{align*}
\item At the crossover angle, \begin{align*}
\alpha - \beta & = 2 \\
\frac{ \cos(\theta_T) }{\cos(\theta_I)} & = 2 + \frac{n_2}{n_1} \\
\frac{\cos(\arcsin(\frac{n_1}{n_2} \sin(\theta_I)))}{\cos(\theta_I)} & = \frac{2n_1 + n_2}{n_1}
\intertext{Using $n_1 = 1$ and using WolframAlpha, this simplifies to}
\theta_C & = \arcsec(\sqrt{\frac{{(n_2 + 1)^2 (n_2 + 2n_2 + 1)^2}}{n_2^2 - 1}}) \\
& \approx \SI{1.35}{\radian} \approx \SI{77.4}{\deg}
\end{align*}
\end{enumerate}
\item \begin{enumerate}
\item The characteristic time is \begin{align*}
\tau & = \epsilon / \sigma \\
& = \frac{ \epsilon_0 n^2 }{1 / \rho} \\
& = 2.42^2 \times (\SI{8.854e-12}{\F\per\meter}) \times (\SI{1e11}{\ohm \meter}) \\
& = \SI{5.2}{\s}
\end{align*}
\item The imaginary wavenumber $\kappa$ is given by \begin{align*}
\kappa & = \frac{ \omega }{c \sqrt{2}} \left[
\sqrt{1 + \left(\frac{\sigma}{\epsilon_0 \omega}\right)^2} - 1
\right]^{1/2} \\
& = \SI{1.187e6}{\per\meter}
\intertext{The skin depth is then}
d & = \frac{1}{\kappa} = \SI{0.843}{\um}
\end{align*}
\item The real wavenumber $k$ is given by \begin{align*}
k & = \frac{ \omega }{c \sqrt{2}} \left[
\sqrt{1 + \left(\frac{\sigma}{\epsilon_0 \omega}\right)^2} + 1
\right]^{1/2} \\
& = \SI{11866}{\per \meter}
\intertext{The wavelength and propagation speed is given by (9.129),}
\lambda & = \frac{2 \pi}{k} = \SI{529.5}{\um} \\
v & = \frac{\omega}{k} = \SI{529.5}{\m\per\s}
\intertext{In vacuum, the wavelength is }
\lambda_0 & = c / f = \SI{300}{\m} \\
v_0 & = c
\end{align*}
\end{enumerate}
\item Letting $\gamma_j = 0$, the wavenumber becomes real \begin{align*}
k & = \frac{\omega}{c} \left[1 + \frac{Nq^2}{2 m \epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2}\right]
\intertext{Taking the derivative with respect to $\omega$,}
\dv{k}{\omega} & = \frac{1}{c} \left[ 1 + \frac{Nq^2}{2 m \epsilon_0} \sum_j f_j \left(\frac{\omega_j^2 + \omega^2}{(\omega_j^2 - \omega^2)^2}\right) \right]
\intertext{The velocity is then just the multiplicative inverse of that}
v_g = \dv{\omega}{k} & = c \left[1 + \frac{Nq^2}{2 m \epsilon_0} \sum_j f_j \left(\frac{\omega_j^2 + \omega^2}{(\omega_j^2 - \omega^2)^2}\right) \right]^{-1}
\end{align*}
Since the sum above is always positive, then $1+\sum_j(\dots)$ will always be greater than 1. As it's in the denominator, $v_g < c$.
\pagebreak
\item Using (9.188), the associated frequencies for TE mode $mn$ are \begin{align*}
\omega_{mn} \equiv c\pi \sqrt{(m/a)^2 + (n/b)^2}
\end{align*}
By iterating over potential modes, we can find frequencies that are $<\SI{1.5e10}{\Hz}$,
\begin{table}[H]
\centering
\begin{tabular}{ccc}
\toprule
$m$ & $n$ & $f_{mn}$ \\
\midrule
$1$ & $0$ & \SI{3.3e9}{\Hz} \\
$2$ & $0$ & \SI{6.7e9}{\Hz} \\
$3$ & $0$ & \SI{1e10}{\Hz} \\
$4$ & $0$ & \SI{1.3e10}{\Hz} \\
\midrule
$1$ & $1$ & \SI{1.1e10}{\Hz} \\
\midrule
$2$ & $1$ & \SI{1.2e10}{\Hz} \\
$3$ & $1$ & \SI{1.4e10}{\Hz} \\
\midrule
$0$ & $1$ & \SI{1e10}{\Hz} \\
\bottomrule
\end{tabular}
\end{table}
To excite a single mode, these combinations are possible: $mn = \{10, 20, 30, 40, 01\}$.
\item The time averaged Poynting vector is given by \begin{align*}
\expval{\bvec{S}} & = \frac{1}{2\mu_0} \bvec{E} \cross \bvec{B}^*
\intertext{where $B_z$ is given by (9.186) and $E_z=0$. Since the Poynting vector is directed in $z$, this resolves to}
\expval{S_z} & = \frac{1}{2 \mu_0} \left(
E_x B_y - E_y B_x
\right)
\intertext{Applying the forms written in (9.180), this becomes}
& = - \frac{1}{2 \mu_0} \left(\frac{i^2 \omega k}{[(\omega / c)^2 - k^2]^2}\right) \left[\pdv{B_z}{y}
\pdv{B_z}{y}
+ \pdv{B_z}{x} \pdv{B_z}{x}
\right] \\
& = \frac{\omega k B_0^2}{2 \mu_0 [(\omega / c)^2 - k^2]^2} \bigg[
\frac{n^2 \pi^2}{b^2}
\cos[2](m \pi x / a)
\sin[2](n \pi y / b) \\
& \qquad +
\frac{m^2 \pi^2}{a^2}
\sin[2](m \pi x / a)
\cos[2](n \pi y / a)
\bigg]
\end{align*}
Integrating this mess over the cross-sectional area gives \begin{align*}
\iint \expval{S_z} \dd{x} \dd{y} & = \frac{\omega k B_0^2 ab \pi^2}{8 \mu_0 [(\omega / c)^2 - k^2]^2} \left(
\frac{n^2}{b^2}
+
\frac{m^2 }{a^2}
\right)
\end{align*}
For the average energy density, \begin{align*}
\expval{u} & = \frac{1}{4} \left[
\epsilon_0 E^2 + \frac{1}{\mu_0} B^2
\right] \\
& = \frac{1}{4} \left[ \epsilon_0 \left(E_x^2 + E_y^2\right)
+ \frac{1}{\mu_0} \left(B_x^2 + B_y^2 + B_z^2\right)
\right] \\
& = \frac{1}{4 [(\omega / c)^2 - k^2]^2} \left\{
{ \epsilon_0 \omega^2 } \left[
\left(\pdv{B_z}{y}\right)^2
+ \left(\pdv{B_z}{x}\right)^2
\right]
+
\frac{k^2}{\mu_0} \left[
\left(\pdv{B_z}{x}\right)^2
+
\left(\pdv{B_z}{y}\right)^2
+ B_z^2
\right]
\right\} \\
& = \frac{B_0^2}{4 [(\omega / c)^2 - k^2]^2} \bigg[
(\epsilon_0 \omega^2 + k^2/\mu_0) \bigg(
\frac{m^2 \pi^2}{b^2} \sin[2](m \pi x / a) \cos[2](n \pi y / b) \\
& \qquad +
\frac{n^2 \pi^2}{a^2} \cos[2](m \pi x / a) \sin[2](n \pi y / b)
\bigg)
+
(k^2 / \mu_0)\cos(m \pi x / a) \cos(n \pi y / b)
\bigg]
\end{align*}
Integrating this over the area results in \begin{align*}
\iint \expval{u} \dd{x} \dd{y} & = \frac{B_0^2 }{4 [(\omega / c)^2 - k^2]^2} \left[
\frac{ \pi^2 ab(\epsilon_0 \omega^2 + k^2/\mu_0) }{4} \left(\frac{n^2}{b} + \frac{m^2}{a} \right)
\right]
\end{align*}
Putting it all together, \begin{align*}
\frac{\int \expval{S_z} \dd{a}}{\int \expval{u} \dd{a}} & = \frac{16 \omega k}{8 \mu_0 (\epsilon_0 \omega^2 + k^2/\mu_0)} \\
& = \frac{2\omega k}{\mu_0 \epsilon_0 \omega^2 + k^2} = \frac{2 \omega k}{(\omega / c)^2 + k^2}
\end{align*}
I think I might have an error somewhere because this doesn't seem to reduce?
\end{enumerate}
\end{document}