-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw12.tex
executable file
·122 lines (110 loc) · 4.5 KB
/
hw12.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
\documentclass{homework}
\title{Homework 12}
\author{Kevin Evans}
\studentid{11571810}
\date{December 9, 2020}
\setclass{Physics}{341}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{calligra}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
\newcommand{\scriptr}{\mathcalligra{r}\,}
\newcommand{\boldscriptr}{\pmb{\mathcalligra{r}}\,}
\begin{document}
\maketitle
\begin{enumerate}
\item \begin{enumerate}
\item From the cylinder, its magnetic field is \begin{align*}
\int \bvec{B} \cdot \dd{\bvec{l}} & = \mu_0 I_\mathrm{enc} \\
& = \mu_0 \int \bvec{J} \cdot \dd{\bvec{a}} \\
& = \mu_0 J_0 \pi R^2 \\
\bvec{B} & = \frac{ \mu_0 J_0 R^2 }{2 s} \uvec{\phi}\\
\end{align*}
Then the torque on the dipole becomes \begin{align*}
\bvec{N} & = \bvec{m} \cross \bvec{B} \\
& = m_0 \frac{ \mu_0 J_0 R^2 }{2 s} (\uvec{z} \cross \uvec{\phi}) \\
& = - m_0 \frac{ \mu_0 J_0 R^2 }{2 s} \uvec{s}
\end{align*}
\item $\bvec{F} = 0$, since $\bvec{m} \perp \bvec{B}$.
\item It's not true for the magnetic analogs because it requires that $\curl{\bvec{E}} = 0 \iff \curl{\bvec{B}} = 0$, but this is not true. It's only true in the electostatic case, but for magnetics, this is equal to $\mu_0 \bvec{J}$.
\end{enumerate}
\item \begin{enumerate}
\item For the bound volume current, \begin{align*}
\bvec{J}_b & = \curl{\bvec{M}} \\
& = 2k \uvec{z}
\intertext{From Ampere's law, $\oint B \dd{l} = \int J \dd{a}$}
B & = \begin{cases}
\mu_0 k s & s < R \\
\frac{ \mu_0 k R^2 }{s} & s > R
\end{cases}
\end{align*}
And the surface charge, $\bvec{K}_b = \bvec{M} \cross \uvec{n}$, but the normal direction ($\uvec{s}$) is perpindicular to $\bvec{M}$, so there is no bound surface current. So the $B$ contribution is zero.
\item There is no free current, so $\bvec{H} = 0$? Then the magnetic field is \begin{align*}
B & = \mu\bvec{H} + \mu\bvec{M} \\
& = \begin{cases}
\mu k s & s < R \\
0? & s > R
\end{cases}
\end{align*}
\end{enumerate}
\item Between the tubes, the free current enclosed is $I$, so the azimuthal $H$ and $B$ field is \begin{align*}
H & = \frac{I}{2 \pi s} \\
B & = \frac{\mu_0 (1 + \chi_m)I}{2 \pi s}
\end{align*}
To check, the magnetization is \begin{align*}
\bvec{M} & = \chi_m \bvec{H} \\
& = \frac{ \chi_m I }{2 \pi s} \uvec{\phi}
\intertext{The bound currents are then}
\bvec{J}_b & = \curl{\bvec{M}} = 0 \\
\bvec{K}_b & = \bvec{M} \cross (\pm \uvec{s}) \\
& = \begin{cases}
\frac{\chi_m I}{2 \pi a} \uvec{z} & s=a \\
\frac{\chi_m I}{2 \pi b} \uvec{z} & s=b
\end{cases}
\intertext{Between the cylinders, the total current is then}
I_\mathrm{enc} & = I + \int K_b \dd{l} \\
& = I + \frac{\chi_mI}{2 \pi a} (2 \pi a) = I (1 + \chi_m)
\end{align*}
From Ampere's law, the magnetic field is \begin{align*}
B & = \frac{\mu_0 I(1 + \chi_m)}{2 \pi s}
\end{align*}
\item For a (free) current $J_z=ks$, within the wire, the $H$ field is\begin{align*}
\bvec{H} & = \frac{ k }{2 \pi s} \int_0^s s^2 \dd{\phi} \uvec{\phi} \\
& = \frac{k}{2 \pi s} \left(\frac{ 2 \pi s^3 }{3}\right)\uvec{\phi} \\
& = \frac{ks^2}{3} \uvec{\phi}
\intertext{Outside the wire, it's the same thing but bounded at $s=a$,}
\bvec{H} & = \begin{cases}
\frac{ks^2}{3}\uvec{\phi} & s < a \\
\frac{ka^3}{3s}\uvec{\phi} & s > a
\end{cases}
\intertext{As it's a linear medium,}
\bvec{B} & = \begin{cases}
\mu_0 (1 + \chi_m) \frac{ks^2}{3}\uvec{\phi} & s < a \\
\mu_0\frac{ka^3}{3s}\uvec{\phi} & s > a
\end{cases}
\end{align*}
For the bound charges, the magnetization $\bvec{M} = \chi_m \bvec{H}$, so \textit{within }the medium,\begin{align*}
\bvec{J}_b & = \curl{\bvec{M}} = 2k/3 \uvec{z} \\
\bvec{K}_b & = \bvec{M} \cross \uvec{n} \\
& = -\frac{ks^2}{3} \uvec{z}
\end{align*}
\item Heating it up to its Curie temperature.
\end{enumerate}
\end{document}