-
Notifications
You must be signed in to change notification settings - Fork 310
Adding an AlbertMaskedLM task + Fix Projection layer dimension in MaskedLMHead #725
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
51fb5fb
9eb6ff4
7ee4bd6
6138b04
4dd31f7
ae25305
27be519
e7287b8
5a036ef
fb24d30
6755a20
59f65b5
d11971c
4498ab8
427b7d3
9036cec
a82350d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,70 @@ | ||
| # Copyright 2023 The KerasNLP Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Albert masked lm model.""" | ||
|
|
||
| import copy | ||
|
|
||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.layers.masked_lm_head import MaskedLMHead | ||
| from keras_nlp.models.albert.albert_backbone import AlbertBackbone | ||
| from keras_nlp.models.albert.albert_backbone import albert_kernel_initializer | ||
| from keras_nlp.models.albert.albert_masked_lm_preprocessor import ( | ||
| AlbertMaskedLMPreprocessor, | ||
| ) | ||
| from keras_nlp.models.albert.albert_presets import backbone_presets | ||
| from keras_nlp.models.task import Task | ||
| from keras_nlp.utils.python_utils import classproperty | ||
|
|
||
|
|
||
| @keras.utils.register_keras_serializable(package="keras_nlp") | ||
| class AlbertMaskedLM(Task): | ||
| def __init__(self, backbone, preprocessor=None, **kwargs): | ||
| inputs = { | ||
| **backbone.input, | ||
| "mask_positions": keras.Input( | ||
| shape=(None,), dtype="int32", name="mask_positions" | ||
| ), | ||
| } | ||
|
|
||
| backbone_outputs = backbone(backbone.input) | ||
| outputs = MaskedLMHead( | ||
| vocabulary_size=backbone.vocabulary_size, | ||
| embedding_weights=backbone.token_embedding.embeddings, | ||
| intermediate_activation="gelu", | ||
kanpuriyanawab marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| kernel_initializer=albert_kernel_initializer(), | ||
| name="mlm_head", | ||
| )(backbone_outputs, inputs["mask_positions"]) | ||
|
|
||
| super().__init__( | ||
| inputs=inputs, | ||
| outputs=outputs, | ||
| include_preprocessing=preprocessor is not None, | ||
| **kwargs | ||
| ) | ||
|
|
||
| self.backbone = backbone | ||
| self.preprocessor = preprocessor | ||
|
|
||
| @classproperty | ||
| def backbone_cls(cls): | ||
| return AlbertBackbone | ||
|
|
||
| @classproperty | ||
| def preprocessor_cls(cls): | ||
| return AlbertMaskedLMPreprocessor | ||
|
|
||
| @classproperty | ||
| def presets(cls): | ||
| return copy.deepcopy(backbone_presets) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,89 @@ | ||
| # Copyright 2023 The KerasNLP Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Albert masked language model preprocessor layer""" | ||
kanpuriyanawab marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| from absl import logging | ||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.layers.masked_lm_mask_generator import MaskedLMMaskGenerator | ||
| from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor | ||
| from keras_nlp.utils.keras_utils import pack_x_y_sample_weight | ||
|
|
||
|
|
||
| @keras.utils.register_keras_serializable(package="keras_nlp") | ||
| class AlbertMaskedLMPreprocessor(AlbertPreprocessor): | ||
| def __init__( | ||
| self, | ||
| tokenizer, | ||
| sequence_length=512, | ||
| truncate="round_robin", | ||
| mask_selection_rate=0.15, | ||
| mask_selection_length=96, | ||
| mask_token_rate=0.8, | ||
| random_token_rate=0.1, | ||
| **kwargs, | ||
| ): | ||
| super().__init__( | ||
| tokenizer, | ||
| sequence_length=sequence_length, | ||
| truncate=truncate, | ||
| **kwargs, | ||
| ) | ||
|
|
||
| self.masker = MaskedLMMaskGenerator( | ||
kanpuriyanawab marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| mask_selection_rate=mask_selection_rate, | ||
| mask_selection_length=mask_selection_length, | ||
| mask_token_rate=mask_token_rate, | ||
| random_token_rate=random_token_rate, | ||
| vocabulary_size=tokenizer.vocabulary_size(), | ||
| mask_token_id=tokenizer.mask_token_id, | ||
| unselectable_token_ids=[ | ||
| tokenizer.cls_token_id, | ||
| tokenizer.sep_token_id, | ||
| tokenizer.pad_token_id, | ||
| ], | ||
| ) | ||
|
|
||
| def get_config(self): | ||
| config = super().get_config() | ||
| config.update( | ||
| { | ||
| "mask_selection_rate": self.masker.mask_selection_rate, | ||
| "mask_selection_length": self.masker.mask_selection_length, | ||
| "mask_token_rate": self.masker.mask_token_rate, | ||
| "random_token_rate": self.masker.random_token_rate, | ||
| } | ||
| ) | ||
| return config | ||
|
|
||
| def call(self, x, y=None, sample_weight=None): | ||
| if y is not None or sample_weight is not None: | ||
| logging.warning( | ||
| f"{self.__class__.__name__} generates `y` and `sample_weight` " | ||
| "based on your input data, but your data already contains `y` " | ||
| "or `sample_weight`. Your `y` and `sample_weight` will be " | ||
| "ignored." | ||
| ) | ||
|
|
||
| x = super().call(x) | ||
| token_ids, padding_mask = x["token_ids"], x["padding_mask"] | ||
| masker_outputs = self.masker(token_ids) | ||
| x = { | ||
| "token_ids": masker_outputs["token_ids"], | ||
| "padding_mask": padding_mask, | ||
| "mask_positions": masker_outputs["mask_positions"], | ||
| } | ||
| y = masker_outputs["mask_ids"] | ||
| sample_weight = masker_outputs["mask_weights"] | ||
| return pack_x_y_sample_weight(x, y, sample_weight) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,161 @@ | ||
| # Copyright 2023 The KerasNLP Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Tests for Albert masked language model preprocessor layer.""" | ||
|
|
||
| import io | ||
| import os | ||
|
|
||
| import sentencepiece | ||
| import tensorflow as tf | ||
| from absl.testing import parameterized | ||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.models.albert.albert_masked_lm_preprocessor import ( | ||
| AlbertMaskedLMPreprocessor, | ||
| ) | ||
| from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer | ||
|
|
||
|
|
||
| class AlbertaMaskedLMPreprocessorTest(tf.test.TestCase, parameterized.TestCase): | ||
kanpuriyanawab marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| def setUp(self): | ||
| vocab_data = tf.data.Dataset.from_tensor_slices( | ||
| ["the quick brown fox", "the earth is round"] | ||
| ) | ||
|
|
||
| bytes_io = io.BytesIO() | ||
| sentencepiece.SentencePieceTrainer.train( | ||
| sentence_iterator=vocab_data.as_numpy_iterator(), | ||
| model_writer=bytes_io, | ||
| vocab_size=10, | ||
| model_type="WORD", | ||
| pad_id=0, | ||
| unk_id=1, | ||
| bos_id=2, | ||
| eos_id=3, | ||
| pad_piece="<pad>", | ||
| unk_piece="<unk>", | ||
| bos_piece="[CLS]", | ||
| eos_piece="[SEP]", | ||
| ) | ||
|
|
||
| proto = bytes_io.getvalue() | ||
|
|
||
| tokenizer = AlbertTokenizer(proto=proto) | ||
|
|
||
| self.preprocessor = AlbertMaskedLMPreprocessor( | ||
| tokenizer=tokenizer, | ||
| # Simplify out testing by masking every available token. | ||
| mask_selection_rate=1.0, | ||
| mask_token_rate=1.0, | ||
| random_token_rate=0.0, | ||
| mask_selection_length=5, | ||
| sequence_length=12, | ||
| ) | ||
|
|
||
| def test_preprocess_strings(self): | ||
| input_data = " airplane at airport" | ||
|
||
|
|
||
| x, y, sw = self.preprocessor(input_data) | ||
| self.assertAllEqual( | ||
| x["token_ids"], [0, 12, 12, 12, 12, 12, 2, 1, 1, 1, 1, 1] | ||
| ) | ||
| self.assertAllEqual( | ||
| x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] | ||
| ) | ||
| self.assertAllEqual(x["mask_positions"], [1, 2, 3, 4, 5]) | ||
| self.assertAllEqual(y, [3, 4, 5, 3, 6]) | ||
| self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 1.0]) | ||
|
|
||
| def test_preprocess_list_of_strings(self): | ||
| input_data = [" airplane at airport"] * 4 | ||
|
|
||
| x, y, sw = self.preprocessor(input_data) | ||
| self.assertAllEqual( | ||
| x["token_ids"], [[0, 12, 12, 12, 12, 12, 2, 1, 1, 1, 1, 1]] * 4 | ||
| ) | ||
| self.assertAllEqual( | ||
| x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 4 | ||
| ) | ||
| self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
| self.assertAllEqual(y, [[3, 4, 5, 3, 6]] * 4) | ||
| self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
|
||
| def test_preprocess_dataset(self): | ||
| sentences = tf.constant([" airplane at airport"] * 4) | ||
| ds = tf.data.Dataset.from_tensor_slices(sentences) | ||
| ds = ds.map(self.preprocessor) | ||
| x, y, sw = ds.batch(4).take(1).get_single_element() | ||
| self.assertAllEqual( | ||
| x["token_ids"], [[0, 12, 12, 12, 12, 12, 2, 1, 1, 1, 1, 1]] * 4 | ||
| ) | ||
| self.assertAllEqual( | ||
| x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 4 | ||
| ) | ||
| self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
| self.assertAllEqual(y, [[3, 4, 5, 3, 6]] * 4) | ||
| self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
|
||
| def test_mask_multiple_sentences(self): | ||
| sentence_one = tf.constant(" airplane") | ||
| sentence_two = tf.constant(" kohli") | ||
|
|
||
| x, y, sw = self.preprocessor((sentence_one, sentence_two)) | ||
| self.assertAllEqual( | ||
| x["token_ids"], [0, 12, 12, 2, 2, 12, 12, 2, 1, 1, 1, 1] | ||
| ) | ||
| self.assertAllEqual( | ||
| x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0] | ||
| ) | ||
| self.assertAllEqual(x["mask_positions"], [1, 2, 5, 6, 0]) | ||
| self.assertAllEqual(y, [3, 4, 7, 8, 0]) | ||
| self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 0.0]) | ||
|
|
||
| def test_no_masking_zero_rate(self): | ||
| no_mask_preprocessor = AlbertMaskedLMPreprocessor( | ||
| self.preprocessor.tokenizer, | ||
| mask_selection_rate=0.0, | ||
| mask_selection_length=5, | ||
| sequence_length=12, | ||
| ) | ||
| input_data = " airplane at airport" | ||
|
|
||
| x, y, sw = no_mask_preprocessor(input_data) | ||
| self.assertAllEqual( | ||
| x["token_ids"], [0, 3, 4, 5, 3, 6, 2, 1, 1, 1, 1, 1] | ||
| ) | ||
| self.assertAllEqual( | ||
| x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] | ||
| ) | ||
| self.assertAllEqual(x["mask_positions"], [0, 0, 0, 0, 0]) | ||
| self.assertAllEqual(y, [0, 0, 0, 0, 0]) | ||
| self.assertAllEqual(sw, [0.0, 0.0, 0.0, 0.0, 0.0]) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("tf_format", "tf", "model"), | ||
| ("keras_format", "keras_v3", "model.keras"), | ||
| ) | ||
| def test_saved_model(self, save_format, filename): | ||
| input_data = tf.constant([" airplane at airport"]) | ||
|
|
||
| inputs = keras.Input(dtype="string", shape=()) | ||
| outputs = self.preprocessor(inputs) | ||
| model = keras.Model(inputs, outputs) | ||
|
|
||
| path = os.path.join(self.get_temp_dir(), filename) | ||
| model.save(path, save_format=save_format) | ||
|
|
||
| restored_model = keras.models.load_model(path) | ||
| outputs = model(input_data)[0]["token_ids"] | ||
| restored_outputs = restored_model(input_data)[0]["token_ids"] | ||
| self.assertAllEqual(outputs, restored_outputs) | ||
Uh oh!
There was an error while loading. Please reload this page.