Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions keras_nlp/models/albert/albert_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor
from keras_nlp.models.albert.albert_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


Expand Down Expand Up @@ -173,6 +174,14 @@ def __init__(
self.num_classes = num_classes
self.dropout = dropout

# Default compilation
self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

def get_config(self):
config = super().get_config()
config.update(
Expand Down
3 changes: 3 additions & 0 deletions keras_nlp/models/albert/albert_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,9 @@ def test_albert_classifier_predict_no_preprocessing(self, jit_compile):
self.classifier_no_preprocessing.compile(jit_compile=jit_compile)
self.classifier_no_preprocessing.predict(self.preprocessed_batch)

def test_albert_classifier_fit_default_compile(self):
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
Expand Down
9 changes: 9 additions & 0 deletions keras_nlp/models/deberta_v3/deberta_v3_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
)
from keras_nlp.models.deberta_v3.deberta_v3_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


Expand Down Expand Up @@ -199,6 +200,14 @@ def __init__(
self.hidden_dim = hidden_dim
self.dropout = dropout

# Default compilation
self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

def get_config(self):
config = super().get_config()
config.update(
Expand Down
3 changes: 3 additions & 0 deletions keras_nlp/models/deberta_v3/deberta_v3_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,9 @@ def test_classifier_predict_no_preprocessing(self, jit_compile):
self.classifier_no_preprocessing.compile(jit_compile=jit_compile)
self.classifier_no_preprocessing.predict(self.preprocessed_batch)

def test_debertav3_classifier_fit_default_compile(self):
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
Expand Down
8 changes: 8 additions & 0 deletions keras_nlp/models/distil_bert/distil_bert_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
)
from keras_nlp.models.distil_bert.distil_bert_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


Expand Down Expand Up @@ -202,6 +203,13 @@ def __init__(
self.hidden_dim = hidden_dim
self.dropout = dropout

self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

def get_config(self):
config = super().get_config()
config.update(
Expand Down
3 changes: 3 additions & 0 deletions keras_nlp/models/distil_bert/distil_bert_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,9 @@ def test_classifier_fit_no_preprocessing(self, jit_compile):
)
self.classifier_no_preprocessing.fit(self.preprocessed_dataset)

def test_distilbert_classifier_fit_default_compile(self):
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("tf_format", "tf", "model"),
("keras_format", "keras_v3", "model.keras"),
Expand Down
8 changes: 8 additions & 0 deletions keras_nlp/models/f_net/f_net_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from keras_nlp.models.f_net.f_net_preprocessor import FNetPreprocessor
from keras_nlp.models.f_net.f_net_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


Expand Down Expand Up @@ -121,6 +122,13 @@ def __init__(
self.num_classes = num_classes
self.dropout = dropout

self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

def get_config(self):
config = super().get_config()
config.update(
Expand Down
3 changes: 3 additions & 0 deletions keras_nlp/models/f_net/f_net_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,9 @@ def test_fnet_classifier_predict_no_preprocessing(self, jit_compile):
self.classifier_no_preprocessing.compile(jit_compile=jit_compile)
self.classifier_no_preprocessing.predict(self.preprocessed_batch)

def test_fnet_classifier_fit_default_compile(self):
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
Expand Down
8 changes: 8 additions & 0 deletions keras_nlp/models/xlm_roberta/xlm_roberta_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
XLMRobertaPreprocessor,
)
from keras_nlp.models.xlm_roberta.xlm_roberta_presets import backbone_presets
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


Expand Down Expand Up @@ -196,6 +197,13 @@ def __init__(
self.hidden_dim = hidden_dim
self.dropout = dropout

self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

def preprocess_samples(self, x, y=None, sample_weight=None):
return self.preprocessor(x, y=y, sample_weight=sample_weight)

Expand Down
3 changes: 3 additions & 0 deletions keras_nlp/models/xlm_roberta/xlm_roberta_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,9 @@ def test_classifier_fit_no_preprocessing(self, jit_compile):
)
self.classifier_no_preprocessing.fit(self.preprocessed_dataset)

def test_xlmroberta_classifier_fit_default_compile(self):
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("tf_format", "tf", "model"),
("keras_format", "keras_v3", "model.keras"),
Expand Down