-
Notifications
You must be signed in to change notification settings - Fork 310
Add AlbertClassifier
#668
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add AlbertClassifier
#668
Changes from 5 commits
2694ef7
9debbd8
83b3626
7ac808f
78e6c56
7aad8c2
de56091
4934876
44b46bc
d6634c1
a2b92b4
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,146 @@ | ||
| # Copyright 2022 The KerasNLP Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """ALBERT classification model.""" | ||
| import copy | ||
|
|
||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.models.albert.albert_backbone import albert_kernel_initializer | ||
| from keras_nlp.models.task import Task | ||
| from keras_nlp.utils.python_utils import classproperty | ||
| from keras_nlp.models.albert.albert_presets import backbone_presets | ||
| from keras_nlp.models.albert.albert_backbone import AlbertBackbone | ||
| from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor | ||
|
|
||
|
|
||
| @keras.utils.register_keras_serializable(package="keras_nlp") | ||
| class AlbertClassifier(Task): | ||
| """An end-to-end ALBERT model for classification tasks | ||
|
|
||
| This model attaches a classification head to a `keras_nlp.model.AlbertBackbone` | ||
| backbone, mapping from the backbone outputs to logit output suitable for | ||
| a classification task. For usage of this model with pre-trained weights, see | ||
| the `from_preset()` method. | ||
|
|
||
| This model can optionally be configured with a `preprocessor` layer, in | ||
| which case it will automatically apply preprocessing to raw inputs during | ||
| `fit()`, `predict()`, and `evaluate()`. This is done by default when | ||
| creating the model with `from_preset()`. | ||
|
|
||
| Disclaimer: Pre-trained models are provided on an "as is" basis, without | ||
| warranties or conditions of any kind. | ||
|
|
||
| Args: | ||
| backbone: A `keras_nlp.models.AlertBackbone` instance. | ||
| num_classes: int. Number of classes to predict. | ||
| dropout: float. The dropout probability value, applied after the dense | ||
| layer. | ||
| preprocessor: A `keras_nlp.models.AlbertPreprocessor` or `None`. If | ||
| `None`, this model will not apply preprocessing, and inputs should | ||
| be preprocessed before calling the model. | ||
|
|
||
| Examples: | ||
|
|
||
| ```python | ||
| # Call classifier on the inputs. | ||
|
||
| preprocessed_features = { | ||
| "token_ids": tf.ones(shape=(2, 12), dtype=tf.int64), | ||
| "segment_ids": tf.constant( | ||
| [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| "padding_mask": tf.constant( | ||
| [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| } | ||
| labels = [0, 3] | ||
|
|
||
| # Randomly initialize a ALBERT backbone. | ||
| backbone = AlbertBackbone( | ||
| vocabulary_size=1000, | ||
| num_layers=2, | ||
| num_heads=2, | ||
| embedding_dim=8, | ||
| hidden_dim=64, | ||
| intermediate_dim=128, | ||
| max_sequence_length=128, | ||
| name="encoder", | ||
| ) | ||
|
|
||
| # Create a ALBERT classifier and fit your data. | ||
| classifier = keras_nlp.models.AlbertClassifier( | ||
| backbone, | ||
| num_classes=4, | ||
| preprocessor=None, | ||
| ) | ||
| classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| ) | ||
| classifier.fit(x=preprocessed_features, y=labels, batch_size=2) | ||
|
|
||
| # Access backbone programatically (e.g., to change `trainable`) | ||
| classifier.backbone.trainable = False | ||
| ``` | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| backbone, | ||
| num_classes=2, | ||
| dropout=0.1, | ||
| preprocessor=None, | ||
| **kwargs, | ||
| ): | ||
| inputs = backbone.input | ||
| pooled = backbone(inputs)["pooled_output"] | ||
| pooled = keras.layers.Dropout(dropout)(pooled) | ||
| outputs = keras.layers.Dense( | ||
| num_classes, | ||
| kernel_initializer=albert_kernel_initializer(), | ||
| name="logits", | ||
| )(pooled) | ||
| # Instantiate using Functional API Model constructor | ||
| super().__init__( | ||
| inputs=inputs, | ||
| outputs=outputs, | ||
| include_preprocessing=preprocessor is not None, | ||
| **kwargs, | ||
| ) | ||
| # All references to `self` below this line | ||
| self._backbone = backbone | ||
| self._preprocessor = preprocessor | ||
| self.num_classes = num_classes | ||
| self.dropout = dropout | ||
|
|
||
| def get_config(self): | ||
| config = super().get_config() | ||
| config.update( | ||
| { | ||
| "num_classes": self.num_classes, | ||
| "dropout": self.dropout, | ||
| } | ||
| ) | ||
| return config | ||
|
|
||
kanpuriyanawab marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| @classproperty | ||
| def backbone_cls(cls): | ||
| return AlbertBackbone | ||
|
|
||
| @classproperty | ||
| def preprocessor_cls(cls): | ||
| return AlbertPreprocessor | ||
|
|
||
| @classproperty | ||
| def presets(cls): | ||
| return copy.deepcopy({**backbone_presets}) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,146 @@ | ||
| # Copyright 2022 The KerasNLP Authors | ||
kanpuriyanawab marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Tests for BERT classification model.""" | ||
|
|
||
| import io | ||
| import os | ||
|
|
||
| import sentencepiece | ||
| import tensorflow as tf | ||
| from absl.testing import parameterized | ||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.models.albert.albert_backbone import AlbertBackbone | ||
| from keras_nlp.models.albert.albert_classifier import AlbertClassifier | ||
| from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor | ||
| from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer | ||
|
|
||
|
|
||
| class AlbertClassifierTest(tf.test.TestCase, parameterized.TestCase): | ||
| def setUp(self): | ||
| self.backbone = AlbertBackbone( | ||
| vocabulary_size=1000, | ||
| num_layers=2, | ||
| num_heads=2, | ||
| embedding_dim=8, | ||
| hidden_dim=64, | ||
| intermediate_dim=128, | ||
| max_sequence_length=128, | ||
| name="encoder", | ||
| ) | ||
|
|
||
| bytes_io = io.BytesIO() | ||
| vocab_data = tf.data.Dataset.from_tensor_slices( | ||
| ["the quick brown fox", "the earth is round"] | ||
| ) | ||
| sentencepiece.SentencePieceTrainer.train( | ||
| sentence_iterator=vocab_data.as_numpy_iterator(), | ||
| model_writer=bytes_io, | ||
| vocab_size=10, | ||
| model_type="WORD", | ||
| pad_id=0, | ||
| unk_id=1, | ||
| bos_id=2, | ||
| eos_id=3, | ||
| pad_piece="<pad>", | ||
| unk_piece="<unk>", | ||
| bos_piece="[CLS]", | ||
| eos_piece="[SEP]", | ||
| ) | ||
| self.proto = bytes_io.getvalue() | ||
|
|
||
| tokenizer = AlbertTokenizer(proto=self.proto) | ||
|
|
||
| self.preprocessor = AlbertPreprocessor( | ||
| tokenizer=tokenizer, | ||
| sequence_length=8, | ||
| ) | ||
| self.classifier = AlbertClassifier( | ||
| self.backbone, | ||
| 4, | ||
| preprocessor=self.preprocessor, | ||
| ) | ||
| self.classifier_no_preprocessing = AlbertClassifier( | ||
| self.backbone, | ||
| 4, | ||
| preprocessor=None, | ||
| ) | ||
|
|
||
| self.raw_batch = tf.constant( | ||
| [ | ||
| "the quick brown fox.", | ||
| "the slow brown fox.", | ||
| "the smelly brown fox.", | ||
| "the old brown fox.", | ||
| ] | ||
| ) | ||
| self.preprocessed_batch = self.preprocessor(self.raw_batch) | ||
| self.raw_dataset = tf.data.Dataset.from_tensor_slices( | ||
| (self.raw_batch, tf.ones((4,))) | ||
| ).batch(2) | ||
| self.preprocessed_dataset = self.raw_dataset.map(self.preprocessor) | ||
|
|
||
| def test_valid_call_classifier(self): | ||
| self.classifier(self.preprocessed_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_predict(self, jit_compile): | ||
| self.classifier.compile(jit_compile=jit_compile) | ||
| self.classifier.predict(self.raw_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_predict_no_preprocessing(self, jit_compile): | ||
| self.classifier_no_preprocessing.compile(jit_compile=jit_compile) | ||
| self.classifier_no_preprocessing.predict(self.preprocessed_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_fit(self, jit_compile): | ||
| self.classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| jit_compile=jit_compile, | ||
| ) | ||
| self.classifier.fit(self.raw_dataset) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_fit_no_preprocessing(self, jit_compile): | ||
| self.classifier_no_preprocessing.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| jit_compile=jit_compile, | ||
| ) | ||
| self.classifier_no_preprocessing.fit(self.preprocessed_dataset) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("tf_format", "tf", "model"), | ||
| ("keras_format", "keras_v3", "model.keras"), | ||
| ) | ||
| def test_saved_model(self, save_format, filename): | ||
| model_output = self.classifier.predict(self.raw_batch) | ||
| save_path = os.path.join(self.get_temp_dir(), filename) | ||
| self.classifier.save(save_path, save_format=save_format) | ||
| restored_model = keras.models.load_model(save_path) | ||
|
|
||
| # Check we got the real object back. | ||
| self.assertIsInstance(restored_model, AlbertClassifier) | ||
|
|
||
| # Check that output matches. | ||
| restored_output = restored_model.predict(self.raw_batch) | ||
| self.assertAllClose(model_output, restored_output) | ||
Uh oh!
There was an error while loading. Please reload this page.