|
| 1 | +# Copyright 2023 The KerasNLP Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import copy |
| 16 | + |
| 17 | +from keras_nlp.api_export import keras_nlp_export |
| 18 | +from keras_nlp.backend import keras |
| 19 | +from keras_nlp.layers.modeling.token_and_position_embedding import ( |
| 20 | + PositionEmbedding, ReversibleEmbedding |
| 21 | +) |
| 22 | +from keras_nlp.layers.modeling.transformer_encoder import TransformerEncoder |
| 23 | +from keras_nlp.models.backbone import Backbone |
| 24 | +from keras_nlp.utils.python_utils import classproperty |
| 25 | + |
| 26 | + |
| 27 | +def electra_kernel_initializer(stddev=0.02): |
| 28 | + return keras.initializers.TruncatedNormal(stddev=stddev) |
| 29 | + |
| 30 | +@keras_nlp_export("keras_nlp.models.ElectraBackbone") |
| 31 | +class ElectraBackbone(Backbone): |
| 32 | + """A Electra encoder network. |
| 33 | +
|
| 34 | + This network implements a bi-directional Transformer-based encoder as |
| 35 | + described in ["Electra: Pre-training Text Encoders as Discriminators Rather |
| 36 | + Than Generators"](https://arxiv.org/abs/2003.10555). It includes the |
| 37 | + embedding lookups and transformer layers, but not the masked language model |
| 38 | + or classification task networks. |
| 39 | +
|
| 40 | + The default constructor gives a fully customizable, randomly initialized |
| 41 | + Electra encoder with any number of layers, heads, and embedding |
| 42 | + dimensions. To load preset architectures and weights, use the |
| 43 | + `from_preset()` constructor. |
| 44 | +
|
| 45 | + Disclaimer: Pre-trained models are provided on an "as is" basis, without |
| 46 | + warranties or conditions of any kind. The underlying model is provided by a |
| 47 | + third party and subject to a separate license, available |
| 48 | + [here](https://huggingface.co/docs/transformers/model_doc/electra#overview). |
| 49 | + """ |
| 50 | + |
| 51 | + def __init__( |
| 52 | + self, |
| 53 | + vocabulary_size, |
| 54 | + num_layers, |
| 55 | + num_heads, |
| 56 | + embedding_size, |
| 57 | + hidden_size, |
| 58 | + intermediate_dim, |
| 59 | + dropout=0.1, |
| 60 | + max_sequence_length=512, |
| 61 | + num_segments=2, |
| 62 | + **kwargs |
| 63 | + ): |
| 64 | + # Index of classification token in the vocabulary |
| 65 | + cls_token_index = 0 |
| 66 | + # Inputs |
| 67 | + token_id_input = keras.Input( |
| 68 | + shape=(None,), dtype="int32", name="token_ids" |
| 69 | + ) |
| 70 | + segment_id_input = keras.Input( |
| 71 | + shape=(None,), dtype="int32", name="segment_ids" |
| 72 | + ) |
| 73 | + padding_mask = keras.Input( |
| 74 | + shape=(None,), dtype="int32", name="padding_mask" |
| 75 | + ) |
| 76 | + |
| 77 | + # Embed tokens, positions, and segment ids. |
| 78 | + token_embedding_layer = ReversibleEmbedding( |
| 79 | + input_dim=vocabulary_size, |
| 80 | + output_dim=embedding_size, |
| 81 | + embeddings_initializer=electra_kernel_initializer(), |
| 82 | + name="token_embedding", |
| 83 | + ) |
| 84 | + token_embedding = token_embedding_layer(token_id_input) |
| 85 | + position_embedding = PositionEmbedding( |
| 86 | + input_dim=max_sequence_length, |
| 87 | + output_dim=embedding_size, |
| 88 | + merge_mode="add", |
| 89 | + embeddings_initializer=electra_kernel_initializer(), |
| 90 | + name="position_embedding", |
| 91 | + )(token_embedding) |
| 92 | + segment_embedding = keras.layers.Embedding( |
| 93 | + input_dim=max_sequence_length, |
| 94 | + output_dim=embedding_size, |
| 95 | + embeddings_initializer=electra_kernel_initializer(), |
| 96 | + name="segment_embedding", |
| 97 | + )(segment_id_input) |
| 98 | + |
| 99 | + # Add all embeddings together. |
| 100 | + x = keras.layers.Add()( |
| 101 | + (token_embedding, position_embedding, segment_embedding) |
| 102 | + ) |
| 103 | + # Layer normalization |
| 104 | + x = keras.layers.LayerNormalization( |
| 105 | + name="embeddings_layer_norm", |
| 106 | + axis=-1, |
| 107 | + epsilon=1e-12, |
| 108 | + dtype="float32", |
| 109 | + )(x) |
| 110 | + # Dropout |
| 111 | + x = keras.layers.Dropout( |
| 112 | + dropout, |
| 113 | + name="embeddings_dropout", |
| 114 | + )(x) |
| 115 | + # Project to hidden dim |
| 116 | + if hidden_size != embedding_size: |
| 117 | + x = keras.layers.Dense( |
| 118 | + hidden_size, |
| 119 | + kernel_initializer=electra_kernel_initializer(), |
| 120 | + name="embedding_projection", |
| 121 | + )(x) |
| 122 | + |
| 123 | + # Apply successive transformer encoder blocks. |
| 124 | + for i in range(num_layers): |
| 125 | + x = TransformerEncoder( |
| 126 | + num_heads=num_heads, |
| 127 | + intermediate_dim=intermediate_dim, |
| 128 | + activation="gelu", |
| 129 | + dropout=dropout, |
| 130 | + layer_norm_epsilon=1e-12, |
| 131 | + kernel_initializer=electra_kernel_initializer(), |
| 132 | + name=f"transformer_layer_{i}", |
| 133 | + )(x, padding_mask=padding_mask) |
| 134 | + |
| 135 | + sequence_output = x |
| 136 | + x = keras.layers.Dense( |
| 137 | + hidden_size, |
| 138 | + kernel_initializer=electra_kernel_initializer(), |
| 139 | + activation="tanh", |
| 140 | + name="pooled_dense", |
| 141 | + )(x) |
| 142 | + pooled_output = x[:, cls_token_index, :] |
| 143 | + |
| 144 | + # Instantiate using Functional API Model constructor |
| 145 | + super().__init__( |
| 146 | + inputs={ |
| 147 | + "token_ids": token_id_input, |
| 148 | + "segment_ids": segment_id_input, |
| 149 | + "padding_mask": padding_mask, |
| 150 | + }, |
| 151 | + outputs={ |
| 152 | + "sequence_output": sequence_output, |
| 153 | + "pooled_output": pooled_output, |
| 154 | + }, |
| 155 | + **kwargs, |
| 156 | + ) |
| 157 | + |
| 158 | + # All references to self below this line |
| 159 | + self.vocab_size = vocabulary_size |
| 160 | + self.num_layers = num_layers |
| 161 | + self.num_heads = num_heads |
| 162 | + self.hidden_size = hidden_size |
| 163 | + self.embedding_size = embedding_size |
| 164 | + self.intermediate_dim = intermediate_dim |
| 165 | + self.dropout = dropout |
| 166 | + self.max_sequence_length = max_sequence_length |
| 167 | + self.num_segments = num_segments |
| 168 | + self.cls_token_index = cls_token_index |
| 169 | + self.token_embedding = token_embedding_layer |
| 170 | + |
| 171 | + def get_config(self): |
| 172 | + config = super().get_config() |
| 173 | + config.update( |
| 174 | + { |
| 175 | + "vocab_size": self.vocab_size, |
| 176 | + "num_layers": self.num_layers, |
| 177 | + "num_heads": self.num_heads, |
| 178 | + "hidden_size": self.hidden_size, |
| 179 | + "embedding_size": self.embedding_size, |
| 180 | + "intermediate_dim": self.intermediate_dim, |
| 181 | + "dropout": self.dropout, |
| 182 | + "max_sequence_length": self.max_sequence_length, |
| 183 | + "num_segments": self.num_segments, |
| 184 | + "cls_token_index": self.cls_token_index, |
| 185 | + "token_embedding": self.token_embedding, |
| 186 | + } |
| 187 | + ) |
| 188 | + return config |
| 189 | + |
| 190 | + |
| 191 | + |
| 192 | + |
| 193 | + |
| 194 | + |
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | + |
0 commit comments