@@ -32,6 +32,9 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
3232    the batch normalization and ReLU activation are applied after the 
3333    convolution layers. 
3434
35+     Note that, `ResNetFeaturePyramidBackbone` expects the inputs to be images 
36+     with a value range of `[0, 255]` when `include_rescaling=True`. 
37+ 
3538    Args: 
3639        stackwise_num_filters: list of ints. The number of filters for each 
3740            stack. 
@@ -44,8 +47,8 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
4447        use_pre_activation: boolean. Whether to use pre-activation or not. 
4548            `True` for ResNetV2, `False` for ResNet. 
4649        include_rescaling: boolean. If `True`, rescale the input using 
47-             `Rescaling(1 / 255.0)` layer . If `False`, do nothing. Defaults to  
48-             `True`. 
50+             `Rescaling` and `Normalization` layers . If `False`, do nothing. 
51+             Defaults to  `True`. 
4952        input_image_shape: tuple. The input shape without the batch size. 
5053            Defaults to `(None, None, 3)`. 
5154        pooling: `None` or str. Pooling mode for feature extraction. Defaults 
@@ -68,23 +71,23 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
6871            `~/.keras/keras.json`. If you never set it, then it will be 
6972            `"channels_last"`. 
7073        dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype 
71-             to use for the models  computations and weights. 
74+             to use for the model's  computations and weights. 
7275        output_keys: `None` or list of strs. Keys to use for the outputs of 
7376            the model. Defaults to `None`, meaning that all 
7477            `self.pyramid_outputs` will be used. 
7578
7679    Examples: 
7780    ```python 
78-     input_data = np.ones( (2, 224, 224, 3), dtype="float32" ) 
81+     input_data = np.random.uniform(0, 255, size= (2, 224, 224, 3)) 
7982
80-     # Pretrained ResNet feature pyramid  backbone. 
83+     # Pretrained ResNet backbone. 
8184    model = keras_nlp.models.ResNetFeaturePyramidBackbone.from_preset( 
8285        "resnet50" 
8386    ) 
8487    model(input_data) 
8588
86-     # Randomly initialized ResNetV2 feature pyramidbackbone  with a custom config. 
87-     model = keras_nlp.models.ResNetBackbone ( 
89+     # Randomly initialized ResNetV2 backbone  with a custom config. 
90+     model = keras_nlp.models.ResNetFeaturePyramidBackbone ( 
8891        stackwise_num_filters=[64, 64, 64], 
8992        stackwise_num_blocks=[2, 2, 2], 
9093        stackwise_num_strides=[1, 2, 2], 
0 commit comments