title: Carr-Madan Formula author: Keith A. Lewis institute: KALX, LLC classoption: fleqn fleqn: true abstract: Payoffs can be replicated with cash, a forward, and a portfolio of puts, and calls ...
\newcommand\RR{\mathbf{R}}
The Carr-Madan formula is
$$
f(x) = f(a) + f'(a)(x - a) + \int_{-\infty}^a (k - x)^+ f''(k),dk
+ \int_a^\infty (x - k)^+ f''(k),dk,
$$
if
This follows from applying the fundamental theorem of calculus twice $$ \begin{aligned} f(x) &= f(a) + \int_a^x f'(y),dy \ f(x) &= f(a) + \int_a^x (f'(a) + \int_a^y f''(z),dz),dy \ f(x) &= f(a) + f'(a)(x - a) + \int_a^x \int_a^y f''(z),dz,dy \ f(x) &= f(a) + f'(a)(x - a) + \int_a^x \int_z^x f''(z),dy,dz \ f(x) &= f(a) + f'(a)(x - a) + \int_a^x (x - z) f''(z),dz \ \end{aligned} $$
If
If
If
If