-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_tvloss.py
executable file
·112 lines (95 loc) · 3.65 KB
/
train_tvloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import time
import math
from tvloss import TotalVarianceLoss
from util.visualizer import Visualizer
# from options.train_options import TrainOptions
from data.custom_dataset_data_loader import CustomDatasetDataLoader
# from models.models import create_model
# from util.visualizer import Visualizer
class Options():
def __init__(self):
# super(Options, self).__init__()
self.batchSize = 1
self.beta1 = 0.5
self.continue_train = False
self.dataroot = "/data/kdabi/CS698O/Autopainter/CS698-cartoon-painter/Dataset_Generator"
self.display_freq = 100
self.display_id = 1
self.display_port = 8097
self.display_single_pane_ncols = 0
self.display_winsize = 256
self.epoch_count = 1
self.fineSize = 256
self.identity = 0.0
self.input_nc = 3
self.isTrain = True
self.lambda_A = 100.0
self.lambda_B = 0.01
self.lambda_C = 0.001
self.loadSize = 286
self.lr = 0.0002
self.lr_decay_iters = 50
self.max_dataset_size = 10000000
self.model = "tvloss"
self.nThreads = 2
self.n_layers_D = 3
self.name = "facades_tvloss"
self.ndf = 64
self.ngf = 64
self.niter = 100
self.niter_decay = 100
self.no_dropout = False
self.no_flip = False
self.no_html = False
self.no_lsgan = True
self.output_nc = 3
self.phase = "train"
self.pool_size = 0
self.print_freq = 100
self.resize_or_crop = "resize_and_crop"
self.save_epoch_freq = 5
self.save_latest_freq = 5000
self.serial_batches = False
self.which_direction = "BtoA"
self.which_epoch = "latest"
self.checkpoints_dir = "/data/kdabi/CS698O/Autopainter/CS698-cartoon-painter/saved_models"
self.results_dir = "/data/kdabi/CS698O/Autopainter/CS698-cartoon-painter/saved_models"
opt = Options()
# opt = TrainOptions().parse()
data_loader = CustomDatasetDataLoader()
data_loader.initialize(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
# print('#training images = %d' % dataset_size)
model = TotalVarianceLoss(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
visualizer.display_current_results(model.get_current_visuals(), epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()