forked from Lightning-Universe/lightning-flash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_server.py
55 lines (46 loc) · 1.46 KB
/
inference_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hummingbird.ml
import sklearn
import sklearn.datasets
from flash.core.serve import Composition, expose, ModelComponent
from flash.core.serve.types import Number, Table
feature_names = [
"CRIM",
"ZN",
"INDUS",
"CHAS",
"NOX",
"RM",
"AGE",
"DIS",
"RAD",
"TAX",
"PTRATIO",
"B",
"LSTAT",
]
class PricePrediction(ModelComponent):
def __init__(self, model): # skipcq: PYL-W0621
self.model = model
@expose(inputs={"table": Table(column_names=feature_names)}, outputs={"pred": Number()})
def predict(self, table):
return self.model(table)
data = sklearn.datasets.load_boston()
model = sklearn.linear_model.LinearRegression()
model.fit(data.data, data.target)
model = hummingbird.ml.convert(model, "torch", test_input=data.data[0:1]).model
comp = PricePrediction(model)
composit = Composition(comp=comp)
composit.serve()