-
Notifications
You must be signed in to change notification settings - Fork 6.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
"RuntimeError: Internal Triton PTX codegen error" is raised when I train shakespeare_char with a GPU #525
Comments
Facing same issue while python train.py config/train_shakespeare_char.py on colab gpu |
I tried running the following code: !pip install tiktoken
!git clone https://github.com/karpathy/nanoGPT.git
%cd nanoGPT
!python train.py config/train_shakespeare_char.py
!python sample.py --out_dir=out-shakespeare-char Found a GPU Compatibility Issue:
If you're using the standard V100-SXM2-16GB GPU, you might face compatibility issues due to the limited memory and capabilities required by the model. Recommendation (this worked for me, didn't have time to dig down further):To avoid this error, upgrade to Colab Pro and ensure you select the A100-SXM4-40GB GPU in your runtime settings. This should resolve the issue and allow your model to train successfully. |
The issue comes from |
在我这边成功了,非常感谢,Thinks a lot |
I am facing the same issue on a T4 GPU:
Pytorch version:
Output of
|
python3 train.py config/train_shakespeare_char.py
Overriding config with config/train_shakespeare_char.py:
train a miniature character-level shakespeare model
good for debugging and playing on macbooks and such
out_dir = 'out-shakespeare-char'
eval_interval = 250 # keep frequent because we'll overfit
eval_iters = 200
log_interval = 10 # don't print too too often
we expect to overfit on this small dataset, so only save when val improves
always_save_checkpoint = False
wandb_log = False # override via command line if you like
wandb_project = 'shakespeare-char'
wandb_run_name = 'mini-gpt'
dataset = 'shakespeare_char'
gradient_accumulation_steps = 1
batch_size = 64
block_size = 256 # context of up to 256 previous characters
baby GPT model :)
n_layer = 6
n_head = 6
n_embd = 384
dropout = 0.2
learning_rate = 1e-3 # with baby networks can afford to go a bit higher
max_iters = 5000
lr_decay_iters = 5000 # make equal to max_iters usually
min_lr = 1e-4 # learning_rate / 10 usually
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
warmup_iters = 100 # not super necessary potentially
on macbook also add
device = 'cpu' # run on cpu only
compile = False # do not torch compile the model
tokens per iteration will be: 16,384
found vocab_size = 65 (inside data/shakespeare_char/meta.pkl)
Initializing a new model from scratch
number of parameters: 10.65M
num decayed parameter tensors: 26, with 10,740,096 parameters
num non-decayed parameter tensors: 13, with 4,992 parameters
using fused AdamW: True
compiling the model... (takes a ~minute)
Traceback (most recent call last):
File "train.py", line 264, in
losses = estimate_loss()
File "/usr/local/lib/python3.8/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "train.py", line 224, in estimate_loss
logits, loss = model(X, Y)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
return callback(frame, cache_entry, hooks, frame_state, skip=1)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 786, in _convert_frame
result = inner_convert(
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
return _compile(
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
guarded_code = compile_inner(code, one_graph, hooks, transform)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 535, in compile_inner
out_code = transform_code_object(code, transform)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1036, in transform_code_object
transformations(instructions, code_options)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 165, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/convert_frame.py", line 500, in transform
tracer.run()
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/symbolic_convert.py", line 2149, in run
super().run()
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/symbolic_convert.py", line 810, in run
and self.step()
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/symbolic_convert.py", line 773, in step
getattr(self, inst.opname)(inst)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/symbolic_convert.py", line 2268, in RETURN_VALUE
self.output.compile_subgraph(
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/output_graph.py", line 1001, in compile_subgraph
self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/output_graph.py", line 1178, in compile_and_call_fx_graph
compiled_fn = self.call_user_compiler(gm)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/output_graph.py", line 1251, in call_user_compiler
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
File "/usr/local/lib/python3.8/dist-packages/torch/dynamo/output_graph.py", line 1232, in call_user_compiler
compiled_fn = compiler_fn(gm, self.example_inputs())
File "/usr/local/lib/python3.8/dist-packages/torch/dynamo/repro/after_dynamo.py", line 117, in debug_wrapper
compiled_gm = compiler_fn(gm, example_inputs)
File "/usr/local/lib/python3.8/dist-packages/torch/init.py", line 1731, in call
return compile_fx(model, inputs, config_patches=self.config)
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/compile_fx.py", line 1330, in compile_fx
return aot_autograd(
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/backends/common.py", line 58, in compiler_fn
cg = aot_module_simplified(gm, example_inputs, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_functorch/aot_autograd.py", line 903, in aot_module_simplified
compiled_fn = create_aot_dispatcher_function(
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_functorch/aot_autograd.py", line 628, in create_aot_dispatcher_function
compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata)
File "/usr/local/lib/python3.8/dist-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 443, in aot_wrapper_dedupe
return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata)
File "/usr/local/lib/python3.8/dist-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 648, in aot_wrapper_synthetic_base
return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata)
File "/usr/local/lib/python3.8/dist-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 119, in aot_dispatch_base
compiled_fw = compiler(fw_module, updated_flat_args)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/compile_fx.py", line 1257, in fw_compiler_base
return inner_compile(
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/repro/after_aot.py", line 83, in debug_wrapper
inner_compiled_fn = compiler_fn(gm, example_inputs)
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/debug.py", line 304, in inner
return fn(*args, **kwargs)
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/compile_fx.py", line 438, in compile_fx_inner
compiled_graph = fx_codegen_and_compile(
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/compile_fx.py", line 714, in fx_codegen_and_compile
compiled_fn = graph.compile_to_fn()
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/graph.py", line 1307, in compile_to_fn
return self.compile_to_module().call
File "/usr/local/lib/python3.8/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/graph.py", line 1254, in compile_to_module
mod = PyCodeCache.load_by_key_path(
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/codecache.py", line 2160, in load_by_key_path
exec(code, mod.dict, mod.dict)
File "/tmp/torchinductor_libra/6z/c6zptqfvl4uwgoca6tk4qimwczeni4sq2plv5hxtx7vncbopqccc.py", line 1162, in
async_compile.wait(globals())
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/codecache.py", line 2715, in wait
scope[key] = result.result()
File "/usr/local/lib/python3.8/dist-packages/torch/_inductor/codecache.py", line 2522, in result
self.future.result()
File "/usr/lib/python3.8/concurrent/futures/_base.py", line 444, in result
return self.__get_result()
File "/usr/lib/python3.8/concurrent/futures/_base.py", line 389, in __get_result
raise self._exception
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
RuntimeError: Internal Triton PTX codegen error:
ptxas /tmp/compile-ptx-src-863569, line 636; error : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 636; error : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 638; error : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 638; error : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 640; error : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 640; error : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 642; error : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-863569, line 642; error : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas fatal : Ptx assembly aborted due to errors
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
You can suppress this exception and fall back to eager by setting:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
The text was updated successfully, but these errors were encountered: