-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassifier_train.py
266 lines (191 loc) · 7.46 KB
/
classifier_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import os
import blobfile as bf
import torch as th
import torch.distributed as dist
import torch.nn.functional as F
from imblearn.metrics import specificity_score, sensitivity_score
from sklearn.metrics import f1_score
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from utils import dist_util, logger
from utils.fp16_util import MixedPrecisionTrainer
from utils.image_datasets import load_data
from utils.script_util import (
add_dict_to_argparser,
args_to_dict,
classifier_defaults,
create_classifier,
create_diffusion
)
from utils.train_util import parse_resume_step_from_filename, log_loss_dict
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model and diffusion...")
model = create_classifier(
**args_to_dict(args, classifier_defaults().keys())
)
model.to(dist_util.dev())
resume_step = 0
if args.resume_checkpoint:
resume_step = parse_resume_step_from_filename(args.resume_checkpoint)
if dist.get_rank() == 0:
logger.log(
f"loading model from checkpoint: {args.resume_checkpoint}... at {resume_step} step"
)
model.load_state_dict(
dist_util.load_state_dict(
args.resume_checkpoint, map_location=dist_util.dev()
)
)
# Needed for creating correct EMAs and fp16 parameters.
dist_util.sync_params(model.parameters())
mp_trainer = MixedPrecisionTrainer(
model=model, use_fp16=args.classifier_use_fp16, initial_lg_loss_scale=16.0
)
model = DDP(
model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
diffusion = create_diffusion()
logger.log("creating data loader...")
data = load_data(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=True,
)
if args.val_data_dir:
val_data = load_data(
data_dir=args.val_data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=True,
)
else:
val_data = None
logger.log(f"creating optimizer...")
opt = AdamW(mp_trainer.master_params, lr=args.lr, weight_decay=args.weight_decay)
if args.resume_checkpoint:
opt_checkpoint = bf.join(
bf.dirname(args.resume_checkpoint), f"opt{resume_step:06}.pt"
)
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
opt.load_state_dict(
dist_util.load_state_dict(opt_checkpoint, map_location=dist_util.dev())
)
logger.log("training classifier model...")
def forward_backward_log(data_loader, diffusion, prefix="train"):
batch, extra, img_paths = next(data_loader)
labels = extra["y"].to(dist_util.dev())
batch = batch.to(dist_util.dev())
with th.no_grad():
encoder_posterior = diffusion.encode_first_stage(batch)
batch = diffusion.get_first_stage_encoding(encoder_posterior).detach()
t = th.zeros(batch.shape[0], dtype=th.long, device=dist_util.dev())
for i, (sub_batch, sub_labels, sub_t) in enumerate(
split_microbatches(args.microbatch, batch, labels, t)
):
logits, features = model(sub_batch, timesteps=sub_t)
# _, logits = model(sub_batch)
loss = F.cross_entropy(logits, sub_labels, reduction="none")
_, pred = logits.topk(1, 1, True, True)
pred = pred.t()
preds = pred.squeeze(0).data.cpu().numpy()
targets = sub_labels.reshape(1, -1).expand_as(pred).squeeze(0).data.cpu().numpy()
f1 = f1_score(targets, preds, average='weighted')
specificity = specificity_score(targets, preds, average='weighted')
sensitivity = sensitivity_score(targets, preds, average='weighted')
losses = {}
losses[f"{prefix}_loss"] = loss.detach()
losses[f"{prefix}_acc@1"] = compute_top_k(
logits, sub_labels, k=1, reduction="none"
)
losses[f"{prefix}_f1"] = f1
losses[f"{prefix}_specificity"] = specificity
losses[f"{prefix}_sensitivity"] = sensitivity
log_loss_dict(diffusion, sub_t, losses)
del losses
loss = loss.mean()
if loss.requires_grad:
if i == 0:
mp_trainer.zero_grad()
mp_trainer.backward(loss * len(sub_batch) / len(batch))
for step in range(args.iterations - resume_step):
logger.logkv("step", step + resume_step)
logger.logkv(
"samples",
(step + resume_step + 1) * args.batch_size * dist.get_world_size(),
)
if args.anneal_lr:
set_annealed_lr(opt, args.lr, (step + resume_step) / args.iterations)
forward_backward_log(data, diffusion)
mp_trainer.optimize(opt)
if val_data is not None and not step % args.eval_interval:
with th.no_grad():
with model.no_sync():
model.eval()
forward_backward_log(val_data, diffusion, prefix="val")
model.train()
if not step % args.log_interval:
logger.dumpkvs()
if step % args.save_interval == 0 and step > 0:
logger.log("saving model...")
save_model(mp_trainer, args, step + resume_step)
dist.barrier()
def set_annealed_lr(opt, base_lr, frac_done):
lr = base_lr * (1 - frac_done)
for param_group in opt.param_groups:
param_group["lr"] = lr
def save_model(mp_trainer, args, step):
save_path = 'saved_classifier_' + args.data_dir.split('/')[-1]
# save_path = 'saved_classifier_crc5%'
if dist.get_rank() == 0:
th.save(
mp_trainer.master_params_to_state_dict(mp_trainer.master_params),
os.path.join(save_path, f"model_{step:06d}.pt"),
)
print(f'model saved to {os.path.join(save_path, f"model_{step:06d}.pt")}')
# th.save(opt.state_dict(), os.path.join(save_path), f"opt{step:06d}.pt")
def compute_top_k(logits, labels, k, reduction="mean"):
_, top_ks = th.topk(logits, k, dim=-1)
if reduction == "mean":
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
elif reduction == "none":
return (top_ks == labels[:, None]).float().sum(dim=-1)
def split_microbatches(microbatch, *args):
bs = len(args[0])
if microbatch == -1 or microbatch >= bs:
yield tuple(args)
else:
for i in range(0, bs, microbatch):
yield tuple(x[i : i + microbatch] if x is not None else None for x in args)
def create_argparser():
defaults = dict(
data_dir="",
val_data_dir="",
noised=False,
iterations=150000,
lr=3e-4,
weight_decay=0.0,
anneal_lr=False,
batch_size=4,
microbatch=-1,
schedule_sampler="uniform",
resume_checkpoint="",
log_interval=10,
eval_interval=5,
save_interval=10000,
)
defaults.update(classifier_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()