-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
256 lines (159 loc) · 7.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd.variable import Variable
from tensorboardX import SummaryWriter
import numpy as np
from PIL import Image
import argparse
import time
import os
from chamfer_distance import ChamferLoss
from logger import Logger
import data_loader
import models
parser = argparse.ArgumentParser(description = 'Structure from Motion Learner training on KITTI and CityScapes Dataset',
formatter_class = argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-j', '--workers', default = 8, type = int, metavar = 'N',
help = 'number of data loading workers')
parser.add_argument('--epochs', default = 100, type = int, metavar = 'N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default = 16, type = int,
metavar = 'N', help = 'batch size')
parser.add_argument('--lr', '--learning-rate', default = 2e-4, type = float,
metavar = 'LR', help='initial learning rate')
parser.add_argument('--momentum', default = 0.9, type = float, metavar = 'M',
help = 'momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default = 0.999, type = float, metavar = 'M',
help = 'beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default = 0, type = float,
metavar = 'W', help = 'weight decay')
parser.add_argument('--channel', '--c', default = 3, type = int,
metavar = 'C', help = 'input channel')
parser.add_argument('--seed', default = 0, type = int, help = 'seed for random functions, and network initialization')
best_error = -1
n_iter = 0
use_cuda = torch.cuda.is_available()
device = torch.device("cuda") if use_cuda else torch.device("cpu")
def main():
global best_error, n_iter, device, use_cuda
args = parser.parse_args()
args.save_path = 'runs/'
if use_cuda:
torch.cuda.manual_seed(args.seed)
else:
torch.manual_seed(args.seed)
print("Loading Data")
train_set = data_loader.DepthData('/home/data_kitti/formatted', '/home/data_kitti/raw', args.channel)
train_loader = torch.utils.data.DataLoader(train_set,
batch_size = args.batch_size, shuffle = True,
num_workers = args.workers, pin_memory = True)
val_set = data_loader.DepthData('/home/data_kitti/formatted', '/home/data_kitti/raw', args.channel, train = False)
val_loader = torch.utils.data.DataLoader(val_set,
batch_size = args.batch_size, shuffle = True,
num_workers = args.workers, pin_memory = True)
print("Load Train Data {}".format(train_set.__len__()))
print("Load Val Data {}".format(val_set.__len__()))
print("Input Data Channel {}".format(args.channel))
print('Creating Model')
model = models.UNetR(args.channel, 1).to(device)
model.init_weights()
cudnn.benchmark = True
model = torch.nn.DataParallel(model, device_ids=[0, 1])
print('Setting Adam Slover')
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
training_writer = SummaryWriter(args.save_path)
for epoch in range(args.epochs):
train_loss = train(args, train_loader, model, optimizer, 0, None, None)
val_loss = validate(args, val_loader, model, optimizer, 0, None)
# val_loss = train_loss
save(model, os.path.join(args.save_path, 'pth'))
if best_error < 0:
best_error = val_loss
save(model, os.path.join(args.save_path, 'best'))
elif val_loss < best_error:
best_error = val_loss
save(model, os.path.join(args.save_path, 'best'))
print("{}_th with train_loss {} val_loss {}".format(n_iter, train_loss, val_loss))
print('Finished')
def random_crop(pred, gt, target_w = 100, target_h = 10):
batch_size, _, width, height = pred.size()
crop_w = np.random.randint(0, width - target_w + 1)
crop_h = np.random.randint(0, height - target_h + 1)
crop_w_end = crop_w + target_w
crop_h_end = crop_h + target_h
if pred.is_cuda and gt.is_cuda:
_pred = pred[:, :, crop_w : crop_w_end, crop_h : crop_h_end].cuda()
_gt = gt[:, :, crop_w : crop_w_end, crop_h : crop_h_end].cuda()
else:
_pred = pred[:, :, crop_w : crop_w_end, crop_h : crop_h_end].cpu()
_gt = gt[:, :, crop_w : crop_w_end, crop_h : crop_h_end].cpu()
return _pred, _gt
def train(args, train_loader, model, optimizer, epoch_size, logger, train_writer):
global n_iter, device
losses = []
model.train()
loss_layer = ChamferLoss()
for i, (img, depth, _) in enumerate(train_loader):
img = img.to(device)
depth = depth.to(device)
output = model(img)
# _output, _depth = random_crop(output, depth)
# _output, _depth = output, depth
output_points = models.depth2pc(output)
gt_points = models.depth2pc(depth)
cd_loss = loss_layer(output_points, gt_points)
cd_loss = torch.mean(cd_loss)
silog = models.getSIlog(depth, output)
var = 1 / torch.var(output_points) * 0.2
smooth = torch.nn.functional.smooth_l1_loss(output, depth)
print('{}_Train Loss: cd loss {}, silog {}, var {}, smooth {}'.format(i, cd_loss, silog, var, smooth))
loss = cd_loss + silog + var #+ smooth
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.detach().cpu().numpy())
n_iter += 1
return np.mean(np.array(losses))
@torch.no_grad()
def validate(args, val_loader, model, optimizer, epoch_size, logger):
global n_iter, device
losses = []
model.eval()
loss_layer = ChamferLoss()
for i, (img, depth, _) in enumerate(val_loader):
img = img.to(device)
depth = depth.to(device)
output = model(img)
output_points = models.depth2pc(output)
gt_points = models.depth2pc(depth)
cd_loss = loss_layer(output_points, gt_points)
cd_loss = torch.mean(cd_loss)
silog = models.getSIlog(depth, output)
var = 1 / torch.var(output_points) * 0.2
smooth = torch.nn.functional.smooth_l1_loss(output, depth)
print('{}_Val Loss: cd loss {}, silog {}, var {}, smooth {}'.format(i, cd_loss, silog, var, smooth))
loss = cd_loss + silog + var #+ smooth
losses.append(loss.detach().cpu().numpy())
return np.mean(np.array(losses))
def save(net, path):
torch.save({'state_dict':net.module.state_dict()}, path)
@torch.no_grad()
def run_interface(img_path, save_path, channels):
img = Image.open(img_path)
img = np.array(img)
img = np.transpose(img, [2, 1, 0])
img = img[np.newaxis, :]
img = Variable(torch.from_numpy(img).float()).to(device)
net = models.UNetR(channels, 1).to(device)
weights = torch.load(save_path)
net.load_state_dict(weights['state_dict'])
net.eval()
output = net(img)
output_points = models.depth2pc(output)
return output_points.detach().cpu().numpy()
if __name__ == '__main__':
main()