-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximum-xor-score-subarray-queries.py
39 lines (36 loc) · 1.32 KB
/
maximum-xor-score-subarray-queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Time: O(n^2 + q)
# Space: O(n^2)
# dp
class Solution(object):
def maximumSubarrayXor(self, nums, queries):
"""
:type nums: List[int]
:type queries: List[List[int]]
:rtype: List[int]
"""
dp = [[nums[i] if j == 0 else 0 for j in xrange(len(nums)-i)] for i in xrange(len(nums))]
for i in reversed(xrange(len(nums))):
for l in xrange(1, len(nums)-i):
dp[i][l] = dp[i][l-1]^dp[i+1][l-1]
for i in reversed(xrange(len(nums))):
for l in xrange(1, len(nums)-i):
dp[i][l] = max(dp[i][l], dp[i][l-1], dp[i+1][l-1])
return [dp[i][j-i] for i, j in queries]
# Time: O(n^2 + q)
# Space: O(n^2)
# dp
class Solution2(object):
def maximumSubarrayXor(self, nums, queries):
"""
:type nums: List[int]
:type queries: List[List[int]]
:rtype: List[int]
"""
dp = [[nums[i] if i == j else 0 for j in xrange(len(nums))] for i in xrange(len(nums))]
for i in reversed(xrange(len(nums))):
for j in xrange(i+1, len(nums)):
dp[i][j] = dp[i][j-1]^dp[i+1][j]
for i in reversed(xrange(len(nums))):
for j in xrange(i+1, len(nums)):
dp[i][j] = max(dp[i][j], dp[i][j-1], dp[i+1][j])
return [dp[i][j] for i, j in queries]