-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfind-the-count-of-monotonic-pairs-i.py
85 lines (78 loc) · 3.23 KB
/
find-the-count-of-monotonic-pairs-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Time: O(n + r), r = max(nums)
# Space: O(n + r)
# combinatorics, stars and bars
class Solution(object):
def countOfPairs(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
fact, inv, inv_fact = [[1]*2 for _ in xrange(3)]
def nCr(n, k):
while len(inv) <= n: # lazy initialization
fact.append(fact[-1]*len(inv) % MOD)
inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html
inv_fact.append(inv_fact[-1]*inv[-1] % MOD)
return (fact[n]*inv_fact[n-k] % MOD) * inv_fact[k] % MOD
def nHr(n, r):
return nCr(n+r-1, r)
MOD = 10**9+7
# arr1 = [0+x1, arr1[0]+max(nums[1]-nums[0], 0)+x2, ..., arr[n-2]+max(nums[n-1]-nums[n-2], 0)+xn]
# => sum(max(nums[i]-nums[i-1], 0) for i in xrange(1, len(nums)))+(x1+x2+...+xn) <= nums[-1]
# => x1+x2+...+xn <= nums[-1]-sum(max(nums[i]-nums[i-1], 0) for i in xrange(1, len(nums))) = cnt <= min(nums)
# => the answer is the number of solutions s.t. x1+x2+...+xn <= cnt, where cnt >= 0
cnt = nums[-1]-sum(max(nums[i]-nums[i-1], 0) for i in xrange(1, len(nums)))
return nHr(len(nums)+1, cnt) if cnt >= 0 else 0
# Time: O(n * r), r = max(nums)
# Space: O(r)
# dp, prefix sum
class Solution2(object):
def countOfPairs(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
MOD = 10**9+7
dp = [int(i <= nums[0]) for i in xrange(max(nums)+1)] # dp[j]: numbers of arr1, which is of length i+1 and arr1[i] is j
for i in xrange(1, len(nums)):
# arr1[i-1] <= arr1[i]
# => arr1[i]-arr1[i-1] >= 0 (1)
#
# arr2[i-1] >= arr2[i]
# => nums[i-1]-arr1[i-1] >= nums[i]-arr1[i]
# => arr1[i]-arr1[i-1] >= nums[i]-nums[i-1] (2)
#
# (1)+(2): arr1[i]-arr1[i-1] >= max(nums[i]-nums[i-1], 0)
new_dp = [0]*len(dp)
diff = max(nums[i]-nums[i-1], 0)
for j in xrange(diff, nums[i]+1):
new_dp[j] = (new_dp[j-1]+dp[j-diff])%MOD
dp = new_dp
return reduce(lambda accu, x: (accu+x)%MOD, dp, 0)
# Time: O(n * r^2), r = max(nums)
# Space: O(r)
# dp
class Solution3(object):
def countOfPairs(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
MOD = 10**9+7
dp = [int(i <= nums[0]) for i in xrange(max(nums)+1)] # dp[j]: numbers of arr1, which is of length i+1 and arr1[i] is j
for i in xrange(1, len(nums)):
# arr1[i-1] <= arr1[i]
# => arr1[i]-arr1[i-1] >= 0 (1)
#
# arr2[i-1] >= arr2[i]
# => nums[i-1]-arr1[i-1] >= nums[i]-arr1[i]
# => arr1[i]-arr1[i-1] >= nums[i]-nums[i-1] (2)
#
# (1)+(2): arr1[i]-arr1[i-1] >= max(nums[i]-nums[i-1], 0)
new_dp = [0]*len(dp)
diff = max(nums[i]-nums[i-1], 0)
for j in xrange(diff, nums[i]+1):
for k in xrange(diff, j+1):
new_dp[j] = (new_dp[j]+dp[k-diff])%MOD
dp = new_dp
return reduce(lambda accu, x: (accu+x)%MOD, dp, 0)