-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfind-minimum-time-to-reach-last-room-ii.cpp
39 lines (36 loc) · 1.69 KB
/
find-minimum-time-to-reach-last-room-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// Time: O(n * m * logn(n * m))
// Space: O(n * m)
// dijkstra's algorithm
class Solution {
public:
int minTimeToReach(vector<vector<int>>& moveTime) {
static const int INF = numeric_limits<int>::max();
static const vector<pair<int, int>> DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
const auto& dijkstra = [&](const pair<int, int>& start, const pair<int, int>& target) {
vector<vector<int>> dist(size(moveTime), vector<int>(size(moveTime[0]), INF));
dist[start.first][start.second] = 0;
priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<tuple<int, int, int>>> min_heap;
min_heap.emplace(dist[start.first][start.second], start.first, start.second);
while (!empty(min_heap)) {
const auto [curr, i, j] = min_heap.top(); min_heap.pop();
if (curr != dist[i][j]) {
continue;
}
if (pair(i, j) == target) {
break;
}
for (const auto& [di, dj] : DIRECTIONS) {
const int ni = i + di, nj = j + dj;
const int c = (i + j) % 2 + 1;
if (!(0 <= ni && ni < size(moveTime) && 0 <= nj && nj < size(moveTime[0]) && dist[ni][nj] > max(moveTime[ni][nj], curr) + c)) {
continue;
}
dist[ni][nj] = max(moveTime[ni][nj], curr) + c;
min_heap.emplace(dist[ni][nj], ni, nj);
}
}
return dist[target.first][target.second];
};
return dijkstra({0, 0}, {size(moveTime) - 1, size(moveTime[0]) - 1});
}
};