-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcount-number-of-balanced-permutations.cpp
72 lines (67 loc) · 2.58 KB
/
count-number-of-balanced-permutations.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Time: O(9 * (9 * n / 2) * (n / 2)) = O(n^2)
// Space: O((9 * n / 2) * (n / 2)) = O(n^2)
// dp, combinatorics
class Solution {
public:
int countBalancedPermutations(string num) {
static const uint32_t MOD = 1e9 + 7;
vector<int> fact = {1, 1};
vector<int> inv = {1, 1};
vector<int> inv_fact = {1, 1};
const auto& lazy_init = [&](int n) {
while (size(inv) <= n) { // lazy initialization
fact.emplace_back((static_cast<int64_t>(fact.back()) * size(inv)) % MOD);
inv.emplace_back((static_cast<int64_t>(inv[MOD % size(inv)]) * (MOD - MOD / size(inv))) % MOD); // https://cp-algorithms.com/algebra/module-inverse.html
inv_fact.emplace_back((static_cast<int64_t>(inv_fact.back()) * inv.back()) % MOD);
}
};
const auto& nCr = [&](int n, int k) {
lazy_init(n);
return (((static_cast<int64_t>(fact[n]) * inv_fact[n - k]) % MOD) * inv_fact[k]) % MOD;
};
const auto& factorial = [&](int n) {
lazy_init(n);
return fact[n];
};
const auto& inv_factorial = [&](int n) {
lazy_init(n);
return inv_fact[n];
};
int total = accumulate(cbegin(num), cend(num), 0, [](const auto& accu, const auto& x) {
return accu + (x - '0');
});
if (total % 2) {
return 0;
}
total /= 2;
vector<int> cnt(26);
for (const auto& x : num) {
++cnt[x - '0'];
}
const int even = size(num) / 2;
vector<vector<int>> dp(total + 1, vector<int>(even + 1));
dp[0][0] = 1;
for (int i = 0; i < size(cnt); ++i) {
if (!cnt[i]) {
continue;
}
for (int j = total; j >= 0; --j) {
for (int k = even; k >= 0; --k) {
if (!dp[j][k]) {
continue;
}
for (int c = 1; c <= cnt[i]; ++c) {
if (j + c * i <= total && k + c <= even) {
dp[j + c * i][k + c] = (dp[j + c * i][k + c] + ((static_cast<int64_t>(dp[j][k]) * nCr(cnt[i], c)) % MOD)) % MOD;
}
}
}
}
}
int result = (((static_cast<int64_t>(dp[total][even]) * factorial(even)) % MOD) * factorial(size(num) - even)) % MOD;
for (const auto& x : cnt) {
result = (static_cast<int64_t>(result) * inv_factorial(x)) % MOD;
}
return result;
}
};