-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathstaying_hydrated3.py
59 lines (52 loc) · 1.98 KB
/
staying_hydrated3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Google Kick Start 2021 Round G - Problem B. Staying Hydrated
# https://codingcompetitions.withgoogle.com/kickstart/round/00000000004362d6/00000000008b3a1c
#
# Time: O(K) on average
# Space: O(K)
#
from random import randint
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
def min_pos(arr):
# let f(x) be the distance function for x in arr:
# - when x starts from smallest to largest in arr,
# f(x) will be strictly decreasing at the begining, then constant,
# and finally strictly increasing
# - since the 2 medians of arr are the exact endpoints where f(x) either starts or ends to be constant,
# so the answer is the smaller median which meets the problem constraints
nth_element(arr, (len(arr)+1)//2-1)
return arr[(len(arr)+1)//2-1]
def staying_hydrated():
K = input()
X, Y = [], []
for _ in xrange(K):
X1, Y1, X2, Y2 = map(int, raw_input().strip().split())
X.extend([X1, X2])
Y.extend([Y1, Y2])
return "%s %s" % (min_pos(X), min_pos(Y))
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, staying_hydrated())