forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alexnet-dorefa.py
executable file
·324 lines (270 loc) · 11.3 KB
/
alexnet-dorefa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: alexnet-dorefa.py
# Author: Yuxin Wu, Yuheng Zou ({wyx,zyh}@megvii.com)
import cv2
import tensorflow as tf
import argparse
import numpy as np
import multiprocessing
import msgpack
import os
import sys
from tensorpack import *
from tensorpack.tfutils.symbolic_functions import *
from tensorpack.tfutils.summary import *
from tensorpack.tfutils.varreplace import remap_variables
from dorefa import get_dorefa
"""
This is a tensorpack script for the ImageNet results in paper:
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
http://arxiv.org/abs/1606.06160
The original experiements are performed on a proprietary framework.
This is our attempt to reproduce it on tensorpack & TensorFlow.
Accuracy:
Trained with 4 GPUs and (W,A,G)=(1,2,6), it can reach top-1 single-crop validation error of 51%,
after 70 epochs. This number is a bit better than what's in the paper
probably due to more sophisticated augmentors.
Note that the effective batch size in SyncMultiGPUTrainer is actually
BATCH_SIZE * NUM_GPU. With a different number of GPUs in use, things might
be a bit different, especially for learning rate.
With (W,A,G)=(32,32,32) -- full precision baseline, 43% error.
With (W,A,G)=(1,32,32) -- BWN, 46% error.
With (W,A,G)=(1,2,6), 51% error.
With (W,A,G)=(1,2,4), 63% error.
Speed:
About 2.2 iteration/s on 1 TitanX. (Each epoch is set to 10000 iterations)
Note that this code was written early without using NCHW format. You
should expect a 30% speed up after switching to NCHW format.
To Train, for example:
./alexnet-dorefa.py --dorefa 1,2,6 --data PATH --gpu 0,1
PATH should look like:
PATH/
train/
n02134418/
n02134418_198.JPEG
...
...
val/
ILSVRC2012_val_00000001.JPEG
...
And you'll need the following to be able to fetch data efficiently
Fast disk random access (Not necessarily SSD. I used a RAID of HDD, but not sure if plain HDD is enough)
More than 12 CPU cores (for data processing)
More than 10G of free memory
To Run Pretrained Model:
./alexnet-dorefa.py --load alexnet-126.npy --run a.jpg --dorefa 1,2,6
"""
BITW = 1
BITA = 2
BITG = 6
TOTAL_BATCH_SIZE = 128
BATCH_SIZE = None
class Model(ModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, [None, 224, 224, 3], 'input'),
InputDesc(tf.int32, [None], 'label')]
def _build_graph(self, inputs):
image, label = inputs
image = image / 255.0
fw, fa, fg = get_dorefa(BITW, BITA, BITG)
old_get_variable = tf.get_variable
# monkey-patch tf.get_variable to apply fw
def new_get_variable(v):
name = v.op.name
# don't binarize first and last layer
if not name.endswith('W') or 'conv0' in name or 'fct' in name:
return v
else:
logger.info("Binarizing weight {}".format(v.op.name))
return fw(v)
def nonlin(x):
if BITA == 32:
return tf.nn.relu(x) # still use relu for 32bit cases
return tf.clip_by_value(x, 0.0, 1.0)
def activate(x):
return fa(nonlin(x))
with remap_variables(new_get_variable), \
argscope(BatchNorm, decay=0.9, epsilon=1e-4), \
argscope([Conv2D, FullyConnected], use_bias=False, nl=tf.identity):
logits = (LinearWrap(image)
.Conv2D('conv0', 96, 12, stride=4, padding='VALID')
.apply(activate)
.Conv2D('conv1', 256, 5, padding='SAME', split=2)
.apply(fg)
.BatchNorm('bn1')
.MaxPooling('pool1', 3, 2, padding='SAME')
.apply(activate)
.Conv2D('conv2', 384, 3)
.apply(fg)
.BatchNorm('bn2')
.MaxPooling('pool2', 3, 2, padding='SAME')
.apply(activate)
.Conv2D('conv3', 384, 3, split=2)
.apply(fg)
.BatchNorm('bn3')
.apply(activate)
.Conv2D('conv4', 256, 3, split=2)
.apply(fg)
.BatchNorm('bn4')
.MaxPooling('pool4', 3, 2, padding='VALID')
.apply(activate)
.FullyConnected('fc0', 4096)
.apply(fg)
.BatchNorm('bnfc0')
.apply(activate)
.FullyConnected('fc1', 4096)
.apply(fg)
.BatchNorm('bnfc1')
.apply(nonlin)
.FullyConnected('fct', 1000, use_bias=True)())
prob = tf.nn.softmax(logits, name='output')
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))
wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
# weight decay on all W of fc layers
wd_cost = regularize_cost('fc.*/W', l2_regularizer(5e-6), name='regularize_cost')
add_param_summary(('.*/W', ['histogram', 'rms']))
self.cost = tf.add_n([cost, wd_cost], name='cost')
add_moving_summary(cost, wd_cost, self.cost)
def _get_optimizer(self):
lr = get_scalar_var('learning_rate', 1e-4, summary=True)
return tf.train.AdamOptimizer(lr, epsilon=1e-5)
def get_data(dataset_name):
isTrain = dataset_name == 'train'
ds = dataset.ILSVRC12(args.data, dataset_name, shuffle=isTrain)
meta = dataset.ILSVRCMeta()
pp_mean = meta.get_per_pixel_mean()
pp_mean_224 = pp_mean[16:-16, 16:-16, :]
if isTrain:
class Resize(imgaug.ImageAugmentor):
def __init__(self):
self._init(locals())
def _augment(self, img, _):
h, w = img.shape[:2]
size = 224
scale = self.rng.randint(size, 308) * 1.0 / min(h, w)
scaleX = scale * self.rng.uniform(0.85, 1.15)
scaleY = scale * self.rng.uniform(0.85, 1.15)
desSize = map(int, (max(size, min(w, scaleX * w)),
max(size, min(h, scaleY * h))))
dst = cv2.resize(img, tuple(desSize),
interpolation=cv2.INTER_CUBIC)
return dst
augmentors = [
Resize(),
imgaug.Rotation(max_deg=10),
imgaug.RandomApplyAug(imgaug.GaussianBlur(3), 0.5),
imgaug.Brightness(30, True),
imgaug.Gamma(),
imgaug.Contrast((0.8, 1.2), True),
imgaug.RandomCrop((224, 224)),
imgaug.RandomApplyAug(imgaug.JpegNoise(), 0.8),
imgaug.RandomApplyAug(imgaug.GaussianDeform(
[(0.2, 0.2), (0.2, 0.8), (0.8, 0.8), (0.8, 0.2)],
(224, 224), 0.2, 3), 0.1),
imgaug.Flip(horiz=True),
imgaug.MapImage(lambda x: x - pp_mean_224),
]
else:
def resize_func(im):
h, w = im.shape[:2]
scale = 256.0 / min(h, w)
desSize = map(int, (max(224, min(w, scale * w)),
max(224, min(h, scale * h))))
im = cv2.resize(im, tuple(desSize), interpolation=cv2.INTER_CUBIC)
return im
augmentors = [
imgaug.MapImage(resize_func),
imgaug.CenterCrop((224, 224)),
imgaug.MapImage(lambda x: x - pp_mean_224),
]
ds = AugmentImageComponent(ds, augmentors, copy=False)
ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
if isTrain:
ds = PrefetchDataZMQ(ds, min(12, multiprocessing.cpu_count()))
return ds
def get_config():
logger.auto_set_dir()
data_train = get_data('train')
data_test = get_data('val')
return TrainConfig(
dataflow=data_train,
callbacks=[
ModelSaver(),
# HumanHyperParamSetter('learning_rate'),
ScheduledHyperParamSetter(
'learning_rate', [(56, 2e-5), (64, 4e-6)]),
InferenceRunner(data_test,
[ScalarStats('cost'),
ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')])
],
model=Model(),
steps_per_epoch=10000,
max_epoch=100,
)
def run_image(model, sess_init, inputs):
pred_config = PredictConfig(
model=model,
session_init=sess_init,
input_names=['input'],
output_names=['output']
)
predictor = OfflinePredictor(pred_config)
meta = dataset.ILSVRCMeta()
pp_mean = meta.get_per_pixel_mean()
pp_mean_224 = pp_mean[16:-16, 16:-16, :]
words = meta.get_synset_words_1000()
def resize_func(im):
h, w = im.shape[:2]
scale = 256.0 / min(h, w)
desSize = map(int, (max(224, min(w, scale * w)),
max(224, min(h, scale * h))))
im = cv2.resize(im, tuple(desSize), interpolation=cv2.INTER_CUBIC)
return im
transformers = imgaug.AugmentorList([
imgaug.MapImage(resize_func),
imgaug.CenterCrop((224, 224)),
imgaug.MapImage(lambda x: x - pp_mean_224),
])
for f in inputs:
assert os.path.isfile(f)
img = cv2.imread(f).astype('float32')
assert img is not None
img = transformers.augment(img)[np.newaxis, :, :, :]
outputs = predictor([img])[0]
prob = outputs[0]
ret = prob.argsort()[-10:][::-1]
names = [words[i] for i in ret]
print(f + ":")
print(list(zip(names, prob[ret])))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='the physical ids of GPUs to use')
parser.add_argument('--load', help='load a checkpoint, or a npy (given as the pretrained model)')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--dorefa',
help='number of bits for W,A,G, separated by comma', required=True)
parser.add_argument('--run', help='run on a list of images with the pretrained model', nargs='*')
args = parser.parse_args()
BITW, BITA, BITG = map(int, args.dorefa.split(','))
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.run:
assert args.load.endswith('.npy')
run_image(Model(), DictRestore(np.load(args.load, encoding='latin1').item()), args.run)
sys.exit()
assert args.gpu is not None, "Need to specify a list of gpu for training!"
NR_GPU = len(args.gpu.split(','))
BATCH_SIZE = TOTAL_BATCH_SIZE // NR_GPU
logger.info("Batch per tower: {}".format(BATCH_SIZE))
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
if args.gpu:
config.nr_tower = len(args.gpu.split(','))
SyncMultiGPUTrainer(config).train()