diff --git a/egs/wsj/s5/steps/libs/nnet3/train/common.py b/egs/wsj/s5/steps/libs/nnet3/train/common.py index d052c78b3f8..a2892a090f3 100644 --- a/egs/wsj/s5/steps/libs/nnet3/train/common.py +++ b/egs/wsj/s5/steps/libs/nnet3/train/common.py @@ -69,9 +69,12 @@ def get_multitask_egs_opts(egs_dir, egs_prefix="", '--output=ark:foo/egs/output.3.ark --weight=ark:foo/egs/weights.3.ark' i.e. egs_prefix is "" for train and "valid_diagnostic." for validation. + + Caution: archive_index is usually an integer, but may be a string ("JOB") + in some cases. """ multitask_egs_opts = "" - egs_suffix = ".{0}".format(archive_index) if archive_index > -1 else "" + egs_suffix = ".{0}".format(archive_index) if archive_index != -1 else "" if use_multitask_egs: output_file_name = ("{egs_dir}/{egs_prefix}output{egs_suffix}.ark" diff --git a/src/rnnlm/rnnlm-example-utils.cc b/src/rnnlm/rnnlm-example-utils.cc index 5aa2465d24d..a019012d20e 100644 --- a/src/rnnlm/rnnlm-example-utils.cc +++ b/src/rnnlm/rnnlm-example-utils.cc @@ -290,7 +290,7 @@ static void ProcessRnnlmOutputNoSampling( row_sums.ApplyLog(); BaseFloat ans = -VecVec(row_sums, minibatch.output_weights); *objf_den_exact = ans; - if (fabs(ans) > 100) { + if (fabs(ans) > 1.0 * nnet_output.NumRows()) { KALDI_WARN << "Big den objf " << ans; } }