diff --git a/egs/wsj/s5/steps/libs/common.py b/egs/wsj/s5/steps/libs/common.py index 1e8e2ced6ce..503721c23d1 100644 --- a/egs/wsj/s5/steps/libs/common.py +++ b/egs/wsj/s5/steps/libs/common.py @@ -18,6 +18,11 @@ import sys import threading +try: + import thread as thread_module +except: + import _thread as thread_module + logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) @@ -230,8 +235,7 @@ def background_command_waiter(command, popen_object, require_zero_status): logger.error(str) # thread.interrupt_main() sends a KeyboardInterrupt to the main # thread, which will generally terminate the program. - import thread - thread.interrupt_main() + thread_module.interrupt_main() else: logger.warning(str) diff --git a/egs/wsj/s5/steps/libs/nnet3/train/chain_objf/acoustic_model.py b/egs/wsj/s5/steps/libs/nnet3/train/chain_objf/acoustic_model.py index 229f290e94c..6afb43824fd 100644 --- a/egs/wsj/s5/steps/libs/nnet3/train/chain_objf/acoustic_model.py +++ b/egs/wsj/s5/steps/libs/nnet3/train/chain_objf/acoustic_model.py @@ -167,7 +167,7 @@ def train_new_models(dir, iter, srand, num_jobs, # work out the 1-based archive index. archive_index = (k % num_archives) + 1 # previous : frame_shift = (k/num_archives) % frame_subsampling_factor - frame_shift = ((archive_index + k/num_archives) + frame_shift = ((archive_index + k//num_archives) % frame_subsampling_factor) multitask_egs_opts = common_train_lib.get_multitask_egs_opts( diff --git a/egs/wsj/s5/steps/libs/nnet3/train/common.py b/egs/wsj/s5/steps/libs/nnet3/train/common.py index 720164e5436..d052c78b3f8 100644 --- a/egs/wsj/s5/steps/libs/nnet3/train/common.py +++ b/egs/wsj/s5/steps/libs/nnet3/train/common.py @@ -288,7 +288,7 @@ def halve_range_str(range_str): halved_ranges = [] for r in ranges: # a range may be either e.g. '64', or '128:256' - c = [str(max(1, int(x)/2)) for x in r.split(":")] + c = [str(max(1, int(x)//2)) for x in r.split(":")] halved_ranges.append(":".join(c)) return ','.join(halved_ranges) @@ -591,7 +591,7 @@ def get_model_combine_iters(num_iters, num_epochs, models_to_combine.add(num_iters) else: subsample_model_factor = 1 - num_iters_combine = min(max_models_combine, num_iters/2) + num_iters_combine = min(max_models_combine, num_iters//2) models_to_combine = set(range(num_iters - num_iters_combine + 1, num_iters + 1))