diff --git a/egs/ami/s5b/RESULTS_ihm b/egs/ami/s5b/RESULTS_ihm index 484115c3243..44234fc3fd9 100644 --- a/egs/ami/s5b/RESULTS_ihm +++ b/egs/ami/s5b/RESULTS_ihm @@ -69,7 +69,7 @@ for d in exp/ihm/chain/tdnn_sp_bi/decode_*; do grep Sum $d/*sc*/*ys | utils/best %WER 22.4 | 13098 94476 | 80.4 10.4 9.2 2.8 22.4 54.6 | 0.069 | exp/ihm/chain/tdnn_sp_bi/decode_dev/ascore_10/dev_hires.ctm.filt.sys %WER 22.5 | 12643 89974 | 80.0 12.1 7.9 2.6 22.5 52.8 | 0.157 | exp/ihm/chain/tdnn_sp_bi/decode_eval/ascore_10/eval_hires.ctm.filt.sys -# local/chain/multi_condition/run_tdnn.sh --mic ihm & +# local/chain/multi_condition/run_tdnn.sh --mic ihm # cleanup + chain TDNN model + IHM reverberated data # for d in exp/ihm/chain_cleaned_rvb/tdnn_sp_bi/decode_*; do grep Sum $d/*sc*/*ys | utils/best_wer.sh; done %WER 21.5 | 13098 94486 | 81.8 11.0 7.2 3.3 21.5 54.6 | 0.090 | exp/ihm/chain_cleaned_rvb/tdnn_sp_rvb_bi/decode_dev/ascore_10/dev_hires.ctm.filt.sys @@ -80,3 +80,10 @@ for d in exp/ihm/chain/tdnn_sp_bi/decode_*; do grep Sum $d/*sc*/*ys | utils/best # cleanup + chain TDNN+LSTM model %WER 20.8 | 13098 94489 | 82.0 10.0 8.0 2.8 20.8 53.2 | -0.096 | exp/ihm/chain_cleaned/tdnn_lstm1i_sp_bi_ld5/decode_dev/ascore_11/dev_hires.ctm.filt.sys %WER 20.7 | 12643 89980 | 81.7 11.5 6.8 2.5 20.7 51.8 | 0.015 | exp/ihm/chain_cleaned/tdnn_lstm1i_sp_bi_ld5/decode_eval/ascore_11/eval_hires.ctm.filt.sys + + +# local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh --mic ihm +# cleanup + chain TDNN+LSTM model + IHM reverberated data +%WER 19.4 | 13098 94479 | 83.8 10.0 6.1 3.2 19.4 51.8 | -0.168 | exp/ihm/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi/decode_dev/ascore_10/dev_hires.ctm.filt.sys +%WER 19.3 | 12643 89977 | 83.3 11.0 5.7 2.6 19.3 49.6 | -0.046 | exp/ihm/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi/decode_eval/ascore_10/eval_hires.ctm.filt.sys + diff --git a/egs/ami/s5b/RESULTS_mdm b/egs/ami/s5b/RESULTS_mdm index 80eb152fc5d..f27da5773ac 100644 --- a/egs/ami/s5b/RESULTS_mdm +++ b/egs/ami/s5b/RESULTS_mdm @@ -86,6 +86,13 @@ # local/chain/tuning/run_tdnn_lstm_1i.sh --mic mdm8 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned # cleanup + chain TDNN+LSTM model, MDM audio and alignments from IHM data -# *** best system *** %WER 34.6 | 15116 94508 | 69.6 17.6 12.9 4.1 34.6 62.3 | 0.687 | exp/mdm8/chain_cleaned/tdnn_lstm1i_sp_bi_ihmali_ld5/decode_dev/ascore_9/dev_hires_o4.ctm.filt.sys %WER 37.1 | 14343 90002 | 66.3 18.8 14.9 3.4 37.1 62.3 | 0.659 | exp/mdm8/chain_cleaned/tdnn_lstm1i_sp_bi_ihmali_ld5/decode_eval/ascore_9/eval_hires_o4.ctm.filt.sys + + +# local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh --mic mdm8 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned +# cleanup + chain TDNN+LSTM model, MDM original + IHM reverberated data, alignments from IHM data +# *** best system *** +%WER 31.8 | 14488 94497 | 71.8 15.4 12.8 3.5 31.8 62.7 | 0.698 | exp/mdm8/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi_ihmali/decode_dev/ascore_10/dev_hires_o4.ctm.filt.sys +%WER 34.2 | 13832 89953 | 68.8 16.5 14.7 3.0 34.2 62.4 | 0.669 | exp/mdm8/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi_ihmali/decode_eval/ascore_10/eval_hires_o4.ctm.filt.sys + diff --git a/egs/ami/s5b/RESULTS_sdm b/egs/ami/s5b/RESULTS_sdm index 5ff1f934a3f..05b68e5e780 100644 --- a/egs/ami/s5b/RESULTS_sdm +++ b/egs/ami/s5b/RESULTS_sdm @@ -79,16 +79,22 @@ %WER 40.7 | 14549 94520 | 63.6 21.4 15.0 4.3 40.7 66.2 | 0.617 | exp/sdm1/chain/tdnn_sp_bi_ihmali/decode_dev/ascore_8/dev_hires_o4.ctm.filt.sys %WER 45.1 | 13296 89971 | 59.1 23.4 17.6 4.2 45.1 69.5 | 0.591 | exp/sdm1/chain/tdnn_sp_bi_ihmali/decode_eval/ascore_8/eval_hires_o4.ctm.filt.sys -# local/chain/multi_condition/run_tdnn.sh --mic sdm1 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned & +# local/chain/multi_condition/run_tdnn.sh --mic sdm1 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned # cleanup + chain TDNN model, SDM original + IHM reverberated data, alignments from ihm data. -# *** best system *** # for d in exp/sdm1/chain_cleaned_rvb/tdnn_sp_rvb_bi_ihmali/decode_*; do grep Sum $d/*sc*/*ys | utils/best_wer.sh; done %WER 38.6 | 14760 94502 | 65.3 19.3 15.4 3.9 38.6 64.9 | 0.599 | exp/sdm1/chain_cleaned_rvb/tdnn_sp_rvb_bi_ihmali/decode_dev/ascore_9/dev_hires_o4.ctm.filt.sys %WER 42.7 | 14070 89982 | 60.9 21.0 18.0 3.6 42.7 64.5 | 0.571 | exp/sdm1/chain_cleaned_rvb/tdnn_sp_rvb_bi_ihmali/decode_eval/ascore_9/eval_hires_o4.ctm.filt.sys # local/chain/tuning/run_tdnn_lstm_1i.sh --mic sdm1 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned -# cleanup + chain TDNN model, SDM audio + alignments from ihm data. -# *** best system *** +# cleanup + chain TDNN+LSTM model, SDM audio + alignments from ihm data. %WER 37.6 | 15122 94495 | 66.1 18.7 15.1 3.7 37.6 63.2 | 0.646 | exp/sdm1/chain_cleaned/tdnn_lstm1i_sp_bi_ihmali_ld5/decode_dev/ascore_10/dev_hires_o4.ctm.filt.sys %WER 40.9 | 13807 89961 | 62.4 20.0 17.6 3.3 40.9 65.7 | 0.612 | exp/sdm1/chain_cleaned/tdnn_lstm1i_sp_bi_ihmali_ld5/decode_eval/ascore_10/eval_hires_o4.ctm.filt.sys + + +# local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh --mic sdm1 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned +# cleanup + chain TDNN+LSTM model, SDM original + IHM reverberated data, alignments from ihm data. +# *** best system *** +%WER 34.0 | 14455 94497 | 69.8 17.7 12.5 3.8 34.0 63.9 | 0.675 | exp/sdm1/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi_ihmali/decode_dev/ascore_10/dev_hires_o4.ctm.filt.sys +%WER 37.5 | 13261 89982 | 65.9 19.3 14.7 3.5 37.5 66.2 | 0.642 | exp/sdm1/chain_cleaned_rvb/tdnn_lstm1i_sp_rvb_bi_ihmali/decode_eval/ascore_10/eval_hires_o4.ctm.filt.sys + diff --git a/egs/ami/s5b/local/chain/multi_condition/run_tdnn.sh b/egs/ami/s5b/local/chain/multi_condition/run_tdnn.sh index 617336236ed..0f6abaf94c1 100755 --- a/egs/ami/s5b/local/chain/multi_condition/run_tdnn.sh +++ b/egs/ami/s5b/local/chain/multi_condition/run_tdnn.sh @@ -1,9 +1,9 @@ #!/bin/bash # This is a chain-training script with TDNN neural networks. -# This script is based on local/chain/run_tdnn.sh, but adding +# This script is based on local/chain/tuning/run_tdnn_1a.sh, but adding # the reverberated IHM data into the train set. -# This script obtains better results on both IHM and SDM tasks. +# This script obtains better results on IHM, SDM and MDM tasks. # Please see RESULTS_* for examples of command lines invoking this script. @@ -20,7 +20,7 @@ stage=1 mic=ihm nj=30 min_seg_len=1.55 -use_ihm_ali=true +use_ihm_ali=false train_set=train_cleaned gmm=tri3_cleaned # the gmm for the target data ihm_gmm=tri3_cleaned # the gmm for the IHM system (if --use-ihm-ali true). diff --git a/egs/ami/s5b/local/chain/multi_condition/run_tdnn_lstm.sh b/egs/ami/s5b/local/chain/multi_condition/run_tdnn_lstm.sh new file mode 120000 index 00000000000..8e647598556 --- /dev/null +++ b/egs/ami/s5b/local/chain/multi_condition/run_tdnn_lstm.sh @@ -0,0 +1 @@ +tuning/run_tdnn_lstm_1a.sh \ No newline at end of file diff --git a/egs/ami/s5b/local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh b/egs/ami/s5b/local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh new file mode 100755 index 00000000000..2869049843f --- /dev/null +++ b/egs/ami/s5b/local/chain/multi_condition/tuning/run_tdnn_lstm_1a.sh @@ -0,0 +1,334 @@ +#!/bin/bash + +# This is a chain-training script with TDNN+LSTM neural networks. +# This script is based on local/chain/tuning/run_tdnn_lstm_1i.sh, but adding +# the reverberated IHM data into the train set. +# This script obtains better results on IHM, SDM and MDM tasks. + +# Please see RESULTS_* for examples of command lines invoking this script. + +# local/chain/multi_condition/run_tdnn_lstm.sh --mic ihm --train-set train_cleaned --gmm tri3_cleaned & +# local/chain/multi_condition/run_tdnn_lstm.sh --mic sdm1 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned & +# local/chain/multi_condition/run_tdnn_lstm.sh --mic mdm8 --use-ihm-ali true --train-set train_cleaned --gmm tri3_cleaned & + + +set -e -o pipefail + +# First the options that are passed through to run_ivector_common.sh +# (some of which are also used in this script directly). +stage=0 +mic=ihm +nj=30 +min_seg_len=1.55 +use_ihm_ali=false +train_set=train_cleaned +gmm=tri3_cleaned # the gmm for the target data +ihm_gmm=tri3_cleaned # the gmm for the IHM system (if --use-ihm-ali true). +num_threads_ubm=32 +num_data_reps=1 + +chunk_width=150 +chunk_left_context=40 +chunk_right_context=0 +label_delay=5 +# The rest are configs specific to this script. Most of the parameters +# are just hardcoded at this level, in the commands below. +train_stage=-10 +tree_affix= # affix for tree directory, e.g. "a" or "b", in case we change the configuration. +tlstm_affix=1i #affix for TDNN-LSTM directory, e.g. "a" or "b", in case we change the configuration. +common_egs_dir= # you can set this to use previously dumped egs. + + +# decode options +extra_left_context=50 +frames_per_chunk= + + +# End configuration section. +echo "$0 $@" # Print the command line for logging + +. ./cmd.sh +. ./path.sh +. ./utils/parse_options.sh + +if ! $use_ihm_ali; then + [ "$mic" != "ihm" ] && \ + echo "$0: you cannot specify --use-ihm-ali false if the microphone is not ihm." && \ + exit 1; +else + [ "$mic" == "ihm" ] && \ + echo "$0: you must specify --use-ihm-ali false if the microphone is ihm." && \ + exit 1; +fi + +if ! cuda-compiled; then + cat <data/lang_chain/topo + fi +fi + +if [ $stage -le 13 ]; then + # Get the alignments as lattices (gives the chain training more freedom). + # use the same num-jobs as the alignments + steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \ + data/lang $gmm_dir $original_lat_dir + rm $original_lat_dir/fsts.*.gz # save space + + lat_dir_ihmdata=exp/ihm/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats + + mkdir -p $lat_dir/temp/ + mkdir -p $lat_dir/temp2/ + lattice-copy "ark:gunzip -c $original_lat_dir/lat.*.gz |" ark,scp:$lat_dir/temp/lats.ark,$lat_dir/temp/lats.scp + lattice-copy "ark:gunzip -c $lat_dir_ihmdata/lat.*.gz |" ark,scp:$lat_dir/temp2/lats.ark,$lat_dir/temp2/lats.scp + + # copy the lattices for the reverberated data + rm -f $lat_dir/temp/combined_lats.scp + touch $lat_dir/temp/combined_lats.scp + cat $lat_dir/temp/lats.scp >> $lat_dir/temp/combined_lats.scp + for i in `seq 1 $num_data_reps`; do + cat $lat_dir/temp2/lats.scp | sed -e "s/^/rev${i}_/" >> $lat_dir/temp/combined_lats.scp + done + sort -u $lat_dir/temp/combined_lats.scp > $lat_dir/temp/combined_lats_sorted.scp + + lattice-copy scp:$lat_dir/temp/combined_lats_sorted.scp "ark:|gzip -c >$lat_dir/lat.1.gz" || exit 1; + echo "1" > $lat_dir/num_jobs + + # copy other files from original lattice dir + for f in cmvn_opts final.mdl splice_opts tree; do + cp $original_lat_dir/$f $lat_dir/$f + done +fi + + +if [ $stage -le 14 ]; then + # Build a tree using our new topology. We know we have alignments for the + # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use + # those. + if [ -f $tree_dir/final.mdl ]; then + echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." + exit 1; + fi + steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ + --context-opts "--context-width=2 --central-position=1" \ + --leftmost-questions-truncate -1 \ + --cmd "$train_cmd" 4200 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir +fi + +xent_regularize=0.1 + +if [ $stage -le 15 ]; then + echo "$0: creating neural net configs using the xconfig parser"; + + num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') + learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) + + mkdir -p $dir/configs + cat < $dir/configs/network.xconfig + input dim=100 name=ivector + input dim=40 name=input + + # please note that it is important to have input layer with the name=input + # as the layer immediately preceding the fixed-affine-layer to enable + # the use of short notation for the descriptor + fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat + + # the first splicing is moved before the lda layer, so no splicing here + relu-renorm-layer name=tdnn1 dim=1024 + relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024 + relu-renorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024 + + # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults + lstmp-layer name=lstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 + relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024 + relu-renorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024 + relu-renorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024 + lstmp-layer name=lstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 + relu-renorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024 + relu-renorm-layer name=tdnn8 input=Append(-3,0,3) dim=1024 + relu-renorm-layer name=tdnn9 input=Append(-3,0,3) dim=1024 + lstmp-layer name=lstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 + + ## adding the layers for chain branch + output-layer name=output input=lstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 + + # adding the layers for xent branch + # This block prints the configs for a separate output that will be + # trained with a cross-entropy objective in the 'chain' models... this + # has the effect of regularizing the hidden parts of the model. we use + # 0.5 / args.xent_regularize as the learning rate factor- the factor of + # 0.5 / args.xent_regularize is suitable as it means the xent + # final-layer learns at a rate independent of the regularization + # constant; and the 0.5 was tuned so as to make the relative progress + # similar in the xent and regular final layers. + output-layer name=output-xent input=lstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 + +EOF + + steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ +fi + +if [ $stage -le 16 ]; then + if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then + utils/create_split_dir.pl \ + /export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5b/$dir/egs/storage $dir/egs/storage + fi + + steps/nnet3/chain/train.py --stage $train_stage \ + --cmd "$decode_cmd" \ + --feat.online-ivector-dir $train_ivector_dir \ + --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ + --chain.xent-regularize $xent_regularize \ + --chain.leaky-hmm-coefficient 0.1 \ + --chain.l2-regularize 0.00005 \ + --chain.apply-deriv-weights false \ + --chain.lm-opts="--num-extra-lm-states=2000" \ + --egs.dir "$common_egs_dir" \ + --egs.opts "--frames-overlap-per-eg 0" \ + --egs.chunk-width $chunk_width \ + --egs.chunk-left-context $chunk_left_context \ + --egs.chunk-right-context $chunk_right_context \ + --trainer.num-chunk-per-minibatch 64 \ + --trainer.frames-per-iter 1500000 \ + --trainer.num-epochs 4 \ + --trainer.optimization.shrink-value 0.99 \ + --trainer.optimization.num-jobs-initial 2 \ + --trainer.optimization.num-jobs-final 12 \ + --trainer.optimization.initial-effective-lrate 0.001 \ + --trainer.optimization.final-effective-lrate 0.0001 \ + --trainer.max-param-change 2.0 \ + --trainer.deriv-truncate-margin 8 \ + --cleanup.remove-egs true \ + --feat-dir $train_data_dir \ + --tree-dir $tree_dir \ + --lat-dir $lat_dir \ + --dir $dir +fi + + +graph_dir=$dir/graph_${LM} +if [ $stage -le 17 ]; then + # Note: it might appear that this data/lang_chain directory is mismatched, and it is as + # far as the 'topo' is concerned, but this script doesn't read the 'topo' from + # the lang directory. + utils/mkgraph.sh --self-loop-scale 1.0 data/lang_${LM} $dir $graph_dir +fi + +if [ $stage -le 18 ]; then + rm $dir/.error 2>/dev/null || true + + [ -z $extra_left_context ] && extra_left_context=$chunk_left_context; + [ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width; + + for decode_set in dev eval; do + ( + steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ + --nj $nj --cmd "$decode_cmd" \ + --extra-left-context $extra_left_context \ + --frames-per-chunk "$frames_per_chunk" \ + --online-ivector-dir exp/$mic/nnet3${nnet3_affix}${rvb_affix}/ivectors_${decode_set}_hires \ + --scoring-opts "--min-lmwt 5 " \ + $graph_dir data/$mic/${decode_set}_hires $dir/decode_${decode_set} || exit 1; + ) || touch $dir/.error & + done + wait + if [ -f $dir/.error ]; then + echo "$0: something went wrong in decoding" + exit 1 + fi +fi +exit 0 diff --git a/egs/ami/s5b/local/chain/run_tdnn_lstm.sh b/egs/ami/s5b/local/chain/run_tdnn_lstm.sh new file mode 120000 index 00000000000..43145248fbd --- /dev/null +++ b/egs/ami/s5b/local/chain/run_tdnn_lstm.sh @@ -0,0 +1 @@ +tuning/run_tdnn_lstm_1i.sh \ No newline at end of file diff --git a/egs/aspire/s5/local/chain/tuning/run_tdnn_7b.sh b/egs/aspire/s5/local/chain/tuning/run_tdnn_7b.sh index d91d016a1f4..4bddb3e5955 100755 --- a/egs/aspire/s5/local/chain/tuning/run_tdnn_7b.sh +++ b/egs/aspire/s5/local/chain/tuning/run_tdnn_7b.sh @@ -100,6 +100,7 @@ if [ $stage -le 9 ]; then data/train data/train_temp_for_lats utils/data/combine_short_segments.sh \ data/train_temp_for_lats $min_seg_len data/train_min${min_seg_len} + steps/compute_cmvn_stats.sh data/train_min${min_seg_len} || exit 1; fi if [ $stage -le 10 ]; then @@ -112,8 +113,8 @@ if [ $stage -le 10 ]; then rm -f $lat_dir/fsts.*.gz # save space rvb_lat_dir=exp/tri5a_rvb_min${min_seg_len}_lats - #mkdir -p $rvb_lat_dir/temp/ - #lattice-copy "ark:gunzip -c $lat_dir/lat.*.gz |" ark,scp:$rvb_lat_dir/temp/lats.ark,$rvb_lat_dir/temp/lats.scp + mkdir -p $rvb_lat_dir/temp/ + lattice-copy "ark:gunzip -c $lat_dir/lat.*.gz |" ark,scp:$rvb_lat_dir/temp/lats.ark,$rvb_lat_dir/temp/lats.scp # copy the lattices for the reverberated data rm -f $rvb_lat_dir/temp/combined_lats.scp