-
Notifications
You must be signed in to change notification settings - Fork 470
/
online-decode-files.py
executable file
·415 lines (350 loc) · 13 KB
/
online-decode-files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python3
"""
This file demonstrates how to use sherpa-onnx Python API to transcribe
file(s) with a streaming model.
Usage:
(1) Streaming transducer
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-en-2023-06-26.tar.bz2
tar xvf sherpa-onnx-streaming-zipformer-en-2023-06-26.tar.bz2
rm sherpa-onnx-streaming-zipformer-en-2023-06-26.tar.bz2
./python-api-examples/online-decode-files.py \
--tokens=./sherpa-onnx-streaming-zipformer-en-2023-06-26/tokens.txt \
--encoder=./sherpa-onnx-streaming-zipformer-en-2023-06-26/encoder-epoch-99-avg-1-chunk-16-left-64.onnx \
--decoder=./sherpa-onnx-streaming-zipformer-en-2023-06-26/decoder-epoch-99-avg-1-chunk-16-left-64.onnx \
--joiner=./sherpa-onnx-streaming-zipformer-en-2023-06-26/joiner-epoch-99-avg-1-chunk-16-left-64.onnx \
./sherpa-onnx-streaming-zipformer-en-2023-06-26/test_wavs/0.wav \
./sherpa-onnx-streaming-zipformer-en-2023-06-26/test_wavs/1.wav \
./sherpa-onnx-streaming-zipformer-en-2023-06-26/test_wavs/8k.wav
(2) Streaming paraformer
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
tar xvf sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
rm sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
./python-api-examples/online-decode-files.py \
--tokens=./sherpa-onnx-streaming-paraformer-bilingual-zh-en/tokens.txt \
--paraformer-encoder=./sherpa-onnx-streaming-paraformer-bilingual-zh-en/encoder.int8.onnx \
--paraformer-decoder=./sherpa-onnx-streaming-paraformer-bilingual-zh-en/decoder.int8.onnx \
./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/0.wav \
./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/1.wav \
./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/2.wav \
./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/3.wav \
./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/8k.wav
(3) Streaming Zipformer2 CTC
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13.tar.bz2
tar xvf sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13.tar.bz2
rm sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13.tar.bz2
ls -lh sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13
./python-api-examples/online-decode-files.py \
--zipformer2-ctc=./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/ctc-epoch-20-avg-1-chunk-16-left-128.onnx \
--tokens=./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/tokens.txt \
./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/test_wavs/DEV_T0000000000.wav \
./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/test_wavs/DEV_T0000000001.wav
(4) Streaming Conformer CTC from WeNet
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zh-wenet-wenetspeech.tar.bz2
tar xvf sherpa-onnx-zh-wenet-wenetspeech.tar.bz2
rm sherpa-onnx-zh-wenet-wenetspeech.tar.bz2
./python-api-examples/online-decode-files.py \
--tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
--wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model-streaming.onnx \
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/0.wav \
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/1.wav \
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/8k.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
to download streaming pre-trained models.
"""
import argparse
import time
import wave
from pathlib import Path
from typing import List, Tuple
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--zipformer2-ctc",
type=str,
help="Path to the zipformer2 ctc model",
)
parser.add_argument(
"--paraformer-encoder",
type=str,
help="Path to the paraformer encoder model",
)
parser.add_argument(
"--paraformer-decoder",
type=str,
help="Path to the paraformer decoder model",
)
parser.add_argument(
"--wenet-ctc",
type=str,
help="Path to the wenet ctc model",
)
parser.add_argument(
"--wenet-ctc-chunk-size",
type=int,
default=16,
help="The --chunk-size parameter for streaming WeNet models",
)
parser.add_argument(
"--wenet-ctc-num-left-chunks",
type=int,
default=4,
help="The --num-left-chunks parameter for streaming WeNet models",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="Valid values are greedy_search and modified_beam_search",
)
parser.add_argument(
"--max-active-paths",
type=int,
default=4,
help="""Used only when --decoding-method is modified_beam_search.
It specifies number of active paths to keep during decoding.
""",
)
parser.add_argument(
"--lm",
type=str,
default="",
help="""Used only when --decoding-method is modified_beam_search.
path of language model.
""",
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.1,
help="""Used only when --decoding-method is modified_beam_search.
scale of language model.
""",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"--hotwords-file",
type=str,
default="",
help="""
The file containing hotwords, one words/phrases per line, like
HELLO WORLD
你好世界
""",
)
parser.add_argument(
"--hotwords-score",
type=float,
default=1.5,
help="""
The hotword score of each token for biasing word/phrase. Used only if
--hotwords-file is given.
""",
)
parser.add_argument(
"--modeling-unit",
type=str,
default="",
help="""
The modeling unit of the model, valid values are cjkchar, bpe, cjkchar+bpe.
Used only when hotwords-file is given.
""",
)
parser.add_argument(
"--bpe-vocab",
type=str,
default="",
help="""
The path to the bpe vocabulary, the bpe vocabulary is generated by
sentencepiece, you can also export the bpe vocabulary through a bpe model
by `scripts/export_bpe_vocab.py`. Used only when hotwords-file is given
and modeling-unit is bpe or cjkchar+bpe.
""",
)
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to decode. Each file must be of WAVE"
"format with a single channel, and each sample has 16-bit, "
"i.e., int16_t. "
"The sample rate of the file can be arbitrary and does not need to "
"be 16 kHz",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def main():
args = get_args()
assert_file_exists(args.tokens)
if args.encoder:
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert not args.paraformer_encoder, args.paraformer_encoder
assert not args.paraformer_decoder, args.paraformer_decoder
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=args.num_threads,
provider=args.provider,
sample_rate=16000,
feature_dim=80,
decoding_method=args.decoding_method,
max_active_paths=args.max_active_paths,
lm=args.lm,
lm_scale=args.lm_scale,
hotwords_file=args.hotwords_file,
hotwords_score=args.hotwords_score,
modeling_unit=args.modeling_unit,
bpe_vocab=args.bpe_vocab,
blank_penalty=args.blank_penalty,
)
elif args.zipformer2_ctc:
recognizer = sherpa_onnx.OnlineRecognizer.from_zipformer2_ctc(
tokens=args.tokens,
model=args.zipformer2_ctc,
num_threads=args.num_threads,
provider=args.provider,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
elif args.paraformer_encoder:
recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer(
tokens=args.tokens,
encoder=args.paraformer_encoder,
decoder=args.paraformer_decoder,
num_threads=args.num_threads,
provider=args.provider,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
elif args.wenet_ctc:
recognizer = sherpa_onnx.OnlineRecognizer.from_wenet_ctc(
tokens=args.tokens,
model=args.wenet_ctc,
chunk_size=args.wenet_ctc_chunk_size,
num_left_chunks=args.wenet_ctc_num_left_chunks,
num_threads=args.num_threads,
provider=args.provider,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
else:
raise ValueError("Please provide a model")
print("Started!")
start_time = time.time()
streams = []
total_duration = 0
for wave_filename in args.sound_files:
assert_file_exists(wave_filename)
samples, sample_rate = read_wave(wave_filename)
duration = len(samples) / sample_rate
total_duration += duration
s = recognizer.create_stream()
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.66 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
streams.append(s)
while True:
ready_list = []
for s in streams:
if recognizer.is_ready(s):
ready_list.append(s)
if len(ready_list) == 0:
break
recognizer.decode_streams(ready_list)
results = [recognizer.get_result(s) for s in streams]
end_time = time.time()
print("Done!")
for wave_filename, result in zip(args.sound_files, results):
print(f"{wave_filename}\n{result}")
print("-" * 10)
elapsed_seconds = end_time - start_time
rtf = elapsed_seconds / total_duration
print(f"num_threads: {args.num_threads}")
print(f"decoding_method: {args.decoding_method}")
print(f"Wave duration: {total_duration:.3f} s")
print(f"Elapsed time: {elapsed_seconds:.3f} s")
print(
f"Real time factor (RTF): {elapsed_seconds:.3f}/{total_duration:.3f} = {rtf:.3f}"
)
if __name__ == "__main__":
main()