-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathcompute_ali.py
executable file
·345 lines (287 loc) · 10.7 KB
/
compute_ali.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao,
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The script gets forced-alignments based on the modified_beam_search decoding method.
Both token-level alignments and word-level alignments are saved to the new cuts manifests.
It loads a checkpoint and uses it to get the forced-alignments.
You can generate the checkpoint with the following command:
./pruned_transducer_stateless7/export.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9
Usage of this script:
./pruned_transducer_stateless7/compute_ali.py \
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
--bpe-model data/lang_bpe_500/bpe.model \
--dataset test-clean \
--max-duration 300 \
--beam-size 4 \
--cuts-out-dir data/fbank_ali_beam_search
"""
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
import sentencepiece as spm
import torch
import torch.nn as nn
from alignment import batch_force_alignment
from asr_datamodule import LibriSpeechAsrDataModule
from lhotse import CutSet
from lhotse.serialization import SequentialJsonlWriter
from lhotse.supervision import AlignmentItem
from train import add_model_arguments, get_params, get_transducer_model
from icefall.utils import AttributeDict, convert_timestamp, parse_timestamp
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="""The name of the dataset to compute alignments for.
Possible values are:
- test-clean
- test-other
- train-clean-100
- train-clean-360
- train-other-500
- dev-clean
- dev-other
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--cuts-out-dir",
type=str,
default="data/fbank_ali_beam_search",
help="The dir to save the new cuts manifests with alignments",
)
add_model_arguments(parser)
return parser
def align_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
) -> Tuple[List[List[str]], List[List[str]], List[List[float]], List[List[float]]]:
"""Get forced-alignments for one batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
Returns:
token_list:
A list of token list.
word_list:
A list of word list.
token_time_list:
A list of timestamps list for tokens.
word_time_list.
A list of timestamps list for words.
where len(token_list) == len(word_list) == len(token_time_list) == len(word_time_list),
len(token_list[i]) == len(token_time_list[i]),
and len(word_list[i]) == len(word_time_list[i])
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
texts = supervisions["text"]
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
frame_indexes = batch_force_alignment(
model, encoder_out, encoder_out_lens, ys_list, params.beam_size
)
token_list = []
word_list = []
token_time_list = []
word_time_list = []
for i in range(encoder_out.size(0)):
tokens = sp.id_to_piece(ys_list[i])
words = texts[i].split()
token_time = convert_timestamp(
frame_indexes[i], params.subsampling_factor, params.frame_shift_ms
)
word_time = parse_timestamp(tokens, token_time)
assert len(word_time) == len(words), (len(word_time), len(words))
token_list.append(tokens)
word_list.append(words)
token_time_list.append(token_time)
word_time_list.append(word_time)
return token_list, word_list, token_time_list, word_time_list
def align_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
writer: SequentialJsonlWriter,
) -> None:
"""Get forced-alignments for the dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
writer:
Writer to save the cuts with alignments.
"""
log_interval = 20
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
for batch_idx, batch in enumerate(dl):
token_list, word_list, token_time_list, word_time_list = align_one_batch(
params=params, model=model, sp=sp, batch=batch
)
cut_list = batch["supervisions"]["cut"]
for cut, token, word, token_time, word_time in zip(
cut_list, token_list, word_list, token_time_list, word_time_list
):
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
token_ali = [
AlignmentItem(
symbol=token[i],
start=round(token_time[i], ndigits=3),
duration=None,
)
for i in range(len(token))
]
word_ali = [
AlignmentItem(
symbol=word[i], start=round(word_time[i], ndigits=3), duration=None
)
for i in range(len(word))
]
cut.supervisions[0].alignment = {"word": word_ali, "token": token_ali}
writer.write(cut, flush=True)
num_cuts += len(cut_list)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
if params.dataset == "test-clean":
test_clean_cuts = librispeech.test_clean_cuts()
dl = librispeech.test_dataloaders(test_clean_cuts)
elif params.dataset == "test-other":
test_other_cuts = librispeech.test_other_cuts()
dl = librispeech.test_dataloaders(test_other_cuts)
elif params.dataset == "train-clean-100":
train_clean_100_cuts = librispeech.train_clean_100_cuts()
dl = librispeech.train_dataloaders(train_clean_100_cuts)
elif params.dataset == "train-clean-360":
train_clean_360_cuts = librispeech.train_clean_360_cuts()
dl = librispeech.train_dataloaders(train_clean_360_cuts)
elif params.dataset == "train-other-500":
train_other_500_cuts = librispeech.train_other_500_cuts()
dl = librispeech.train_dataloaders(train_other_500_cuts)
elif params.dataset == "dev-clean":
dev_clean_cuts = librispeech.dev_clean_cuts()
dl = librispeech.valid_dataloaders(dev_clean_cuts)
else:
assert params.dataset == "dev-other", f"{params.dataset}"
dev_other_cuts = librispeech.dev_other_cuts()
dl = librispeech.valid_dataloaders(dev_other_cuts)
cuts_out_dir = Path(params.cuts_out_dir)
cuts_out_dir.mkdir(parents=True, exist_ok=True)
cuts_out_path = cuts_out_dir / f"librispeech_cuts_{params.dataset}.jsonl.gz"
with CutSet.open_writer(cuts_out_path) as writer:
align_dataset(dl=dl, params=params, model=model, sp=sp, writer=writer)
logging.info(
f"For dataset {params.dataset}, the cut manifest with framewise token alignments "
f"and word alignments are saved to {cuts_out_path}"
)
logging.info("Done!")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()