-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
320 lines (286 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import json
import hashlib
import os
import argparse
import copy
import logging
import sys
def dict_hash(dictionary):
dhash = hashlib.md5()
encoded = json.dumps(dictionary, sort_keys=True).encode()
dhash.update(encoded)
return dhash.hexdigest()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='FL Training')
parser.add_argument("--session_tag", type=str, default="default_session", help="Sets name of subfolder for experiments")
parser.add_argument("--algorithm", type=str, default="FedAvg",
choices=['CoCoFL', 'Centralized', 'FedAvg', 'FedAvgDropDevices'], help="Choice of algorithm")
parser.add_argument("--dataset", type=str, choices=["CIFAR10", "CIFAR100", "CINIC10",
"FEMNIST", "IMDB", "XCHEST", "SHAKESPEARE"], default="CIFAR10", help="Datasets (not all dataset/network combinations are possible)")
parser.add_argument("--seed", type=int, default=11, help="Sets random seed for experiment")
parser.add_argument("--network", choices=['MobileNet', 'MobileNetGroupNorm', 'ResNet18', 'ResNet50', 'DenseNet',
'Transformer', 'TransformerSeq2Seq', 'MobileNetLarge'], default="MobileNet", help="NN for experiement")
parser.add_argument("--n_devices", type=int, default=100, help="Number of total FL devices")
parser.add_argument("--n_devices_per_round", type=int, default=10, help="Number of FL devices active in one round")
parser.add_argument("--data_distribution", type=str, choices=['IID', 'NONIID', 'RCNONIID'], default="IID")
parser.add_argument("--lr", type=float, default=0.1, help="Learning rate")
parser.add_argument("--lr_schedule", nargs="+", type=int, default=[600, 800], help="Learning Rate Schedule (LR is reduced by 10x per step)")
parser.add_argument("--weight_decay", type=float, default=1e-3, help="Weight decay for SGD optimizer")
parser.add_argument("--noniid_dirichlet", type=float, default=0.1, help="Dirichlet alpha to control non-iidnes")
parser.add_argument("--n_rounds", type=int, default=1000, help="Number of total FL rounds")
parser.add_argument("--torch_device", type=str, default="cuda:0", help="PyTorch device (cuda or cpu)")
parser.add_argument("--progress_bar", type=bool, default=True, help="Progress bar printed in stdout")
parser.add_argument("--plot", type=bool, default=True, help="Plots are generated every 25 FL rounds")
parser.add_argument("--dry_run", help="Dry_run loads the NN, datasets, but does not apply training and does not create any files")
args = parser.parse_args()
print(args)
assert args.n_devices >= args.n_devices_per_round, "Cannot be more active devices than overall devices"
# compatability checks
if args.network in ['MobileNet', 'MobileNetGroupNorm', 'ResNet18', 'MobileNet', 'DenseNet']:
if args.dataset not in ['CIFAR10', 'CIFAR100', 'FEMNIST', 'CINIC10']:
raise ValueError(args.dataset)
if args.network == "Transformer":
if args.dataset != "IMDB":
raise ValueError(args.dataset)
if args.network == 'TransformerSeq2Seq':
if args.dataset != "SHAKESPEARE":
raise ValueError(args.dataset)
if args.network == 'MobileNetLarge':
if args.dataset != "XCHEST":
raise ValueError(args.dataset)
settings = vars(copy.deepcopy(args))
settings.pop('torch_device')
settings.pop('n_rounds')
settings.pop('plot')
settings.pop('dry_run')
settings.pop('progress_bar')
if args.algorithm == 'Centralized':
settings.pop('n_devices')
settings.pop('n_devices_per_round')
settings.pop('data_distribution')
settings.pop('noniid_dirichlet')
args.n_devices_per_round = 1
args.n_devices = 1
if args.data_distribution == 'IID':
try:
settings.pop('noniid_dirichlet')
except KeyError:
pass
if args.dataset == 'SHAKESPEARE':
if args.data_distribution == 'RCNONIID':
try:
settings.pop('noniid_dirichlet')
except KeyError:
pass
if args.torch_device.startswith('cuda'):
try:
os.environ["CUDA_VISIBLE_DEVICES"] = args.torch_device.split('cuda:')[1]
args.torch_device = 'cuda'
except IndexError:
pass
run_hash = dict_hash(settings)
run_path = "runs/" + args.session_tag + "/run_" + run_hash
import torch
torch.manual_seed(args.seed)
torch.set_num_threads(12)
torch.set_num_interop_threads(12)
if args.algorithm == 'FedAvg':
from algorithms.fedavg import FedAvgServer
flserver = FedAvgServer(run_path)
elif args.algorithm == 'FedAvgDropDevices':
from algorithms.fedavg_drop_devices import FedAvgDropDevicesServer
flserver = FedAvgDropDevicesServer(run_path)
elif args.algorithm == 'CoCoFL':
from algorithms.cocofl import CoCoFLServer
flserver = CoCoFLServer(run_path)
elif args.algorithm == 'Centralized':
from algorithms.centralized import CentralizedServer
flserver = CentralizedServer(run_path)
from utils.resources import DeviceResources, Constant, Uniform
# Implementation of strong/medium/weak scheme
device_constraints = [DeviceResources() for _ in range(args.n_devices)]
if args.algorithm in ['CoCoFL', 'FedAvgDropDevices']:
for resource in device_constraints[0:int(0.33*args.n_devices)]:
resource.set_all(Constant(1.0), Constant(1.0), Constant(1.0))
for resource in device_constraints[int(0.33*args.n_devices):int(0.66*args.n_devices)]:
resource.set_all(Constant(0.66), Uniform(0.5, 1.0), Constant(0.66))
for resource in device_constraints[int(0.66*args.n_devices):]:
resource.set_all(Constant(0.33), Uniform(0.5, 1.0), Constant(0.33))
else:
for resource in device_constraints:
resource.set_all(Constant(1.0), Constant(1.0), Constant(1.0))
flserver.set_device_constraints(device_constraints)
flserver.n_devices_per_round = args.n_devices_per_round
flserver.n_devices = args.n_devices
flserver.torch_device = args.torch_device
flserver.n_rounds = args.n_rounds
flserver.lr = args.lr
flserver.set_seed(args.seed)
flserver.lr_schedule = [[args.lr_schedule[i], args.lr/10**(i+1)] for i in range(len(args.lr_schedule))]
flserver.progress_output = args.progress_bar
flserver.set_optimizer(torch.optim.SGD, {'weight_decay': args.weight_decay})
from torchvision import datasets, transforms
# Dataset selection
if 'CIFAR' in args.dataset:
tf = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
kwargs = {'download': True, 'transform': tf}
if args.dataset.endswith('100'):
flserver.set_dataset(datasets.CIFAR100, "/tmp/", **kwargs)
cnn_args = {'num_classes': 100}
elif args.dataset.endswith('10'):
flserver.set_dataset(datasets.CIFAR10, "/tmp/", **kwargs)
cnn_args = {'num_classes': 10}
elif 'CINIC10' in args.dataset:
from utils.datasets.cinic10 import CINIC10
tf = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.478, 0.472, 0.430), (0.242, 0.238, 0.258))])
kwargs = {'download': True, 'transform': tf}
flserver.set_dataset(CINIC10, "/tmp/", **kwargs)
cnn_args = {'num_classes': 10}
elif 'XCHEST' in args.dataset:
from utils.datasets.xchest import XCHEST
tf = transforms.Compose([transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
kwargs = {'download': True, 'transform': tf}
flserver.set_dataset(XCHEST, "/tmp/", **kwargs)
flserver.is_unbalanced = True
cnn_args = {'num_classes': 2}
elif 'FEMNIST' in args.dataset:
from utils.datasets.femnist import FEMNIST, femnist_to_cifar_format_transform
tf = transforms.Compose([femnist_to_cifar_format_transform()])
kwargs = {'transform': tf}
flserver.set_dataset(FEMNIST, "data/", **kwargs)
cnn_args = {'num_classes': 62}
elif 'IMDB' in args.dataset:
from utils.datasets.imdb import IMDB
seq_len = 512
kwargs = {'seq_len': seq_len}
cnn_args = {}
flserver.set_dataset(IMDB, "data/", **kwargs)
elif 'SHAKESPEARE' in args.dataset:
from utils.datasets.shakespeare import SHAKESPEARE
kwargs = {}
cnn_args = {}
flserver.set_dataset(SHAKESPEARE, "data/", **kwargs)
# Model selection
if args.network == 'ResNet18':
from nets.Baseline.ResNet.resnet import ResNet18 as baseline_ResNet18
net_eval = baseline_ResNet18
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
from nets.Baseline.ResNet.resnet import ResNet18
net = ResNet18
net_eval = ResNet18
elif args.algorithm in ['CoCoFL']:
net_eval = baseline_ResNet18
from nets.QuantizedNets.ResNet.resnet import QResNet18
net = QResNet18
elif args.network == 'ResNet50':
from nets.Baseline.ResNet.resnet import ResNet50 as baseline_ResNet50
net_eval = baseline_ResNet50
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
from nets.Baseline.ResNet.resnet import ResNet50
net = ResNet50
net_eval = ResNet50
elif args.algorithm in ['CoCoFL']:
net_eval = baseline_ResNet50
from nets.QuantizedNets.ResNet.resnet import QResNet50
net = QResNet50
elif args.network == 'MobileNetGroupNorm':
from nets.Baseline.MobileNet.mobilenet_norm import MobileNetV2GroupNorm
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
net_eval = MobileNetV2GroupNorm
net = MobileNetV2GroupNorm
elif args.algorithm in ['CoCoFL']:
from nets.QuantizedNets.MobileNet.mobilenet_norm import QMobileNetGroupNorm
net_eval = MobileNetV2GroupNorm
net = QMobileNetGroupNorm
elif args.network == 'MobileNetLarge':
from nets.Baseline.MobileNet.mobilenet import MobileNetV2Large
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
net_eval = MobileNetV2Large
net = MobileNetV2Large
elif args.algorithm in ['CoCoFL']:
from nets.QuantizedNets.MobileNet.mobilenet import QMobileNetLarge
net_eval = MobileNetV2Large
net = QMobileNetLarge
elif args.network == 'MobileNet':
from nets.Baseline.MobileNet.mobilenet import MobileNetV2 as baseline_MobileNetV2
net_eval = baseline_MobileNetV2
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
net = baseline_MobileNetV2
net_eval = baseline_MobileNetV2
elif args.algorithm in ['CoCoFL']:
net_eval = baseline_MobileNetV2
from nets.QuantizedNets.MobileNet.mobilenet import QMobileNet
net = QMobileNet
elif args.network == 'DenseNet':
from nets.Baseline.DenseNet.densenet import DenseNet40 as baseline_DenseNet40
net_eval = baseline_DenseNet40
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
net = baseline_DenseNet40
net_eval = baseline_DenseNet40
elif args.algorithm in ['CoCoFL']:
net_eval = baseline_DenseNet40
from nets.QuantizedNets.DenseNet.densenet import QDenseNet40
net = QDenseNet40
elif args.network == 'TransformerSeq2Seq':
from nets.Baseline.Transformer.transformer import TransformerSeq2Seq
net_eval = TransformerSeq2Seq
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
net = TransformerSeq2Seq
elif args.algorithm in ['CoCoFL']:
from nets.QuantizedNets.Transformer.transformer import QTransformerSeq2Seq
net = QTransformerSeq2Seq
elif args.network == 'Transformer':
from nets.Baseline.Transformer.transformer import Transformer as baseline_Transformer
net_eval = baseline_Transformer
if args.algorithm in ['Centralized', 'FedAvg', 'FedAvgDropDevices']:
if args.network != 'Transformer': raise ValueError(args.algorithm)
net = baseline_Transformer
elif args.algorithm in ['CoCoFL']:
from nets.QuantizedNets.Transformer.transformer import QTransformer
net = QTransformer
from utils.split import split_iid, split_noniid, split_rcnoniid, split_SHAKESPEARE_rcnoniid
if args.data_distribution == 'IID':
flserver.split_function = split_iid(run_path, False if args.dry_run else args.plot, args.seed)
elif args.data_distribution == 'NONIID':
flserver.split_function = split_noniid(args.noniid_dirichlet, run_path, False if args.dry_run else args.plot, args.seed)
elif args.data_distribution == 'RCNONIID':
if args.dataset == 'SHAKESPEARE':
flserver.split_function = split_SHAKESPEARE_rcnoniid(run_path, False if args.dry_run else args.plot, args.seed)
else:
flserver.split_function = split_rcnoniid(args.noniid_dirichlet, run_path, False if args.dry_run else args.plot, args.seed)
cnn_args_list = [cnn_args for _ in range(args.n_devices)]
flserver.set_model([net for _ in range(args.n_devices)], cnn_args_list)
flserver.set_model_evaluation(net_eval, cnn_args_list[0])
if args.dry_run:
print("DRY RUN PERFORMED SUCCESSFULLY")
print("Run HASH ", run_hash)
flserver.initialize()
sys.exit(0)
try:
os.makedirs(run_path)
with open(run_path + "/" + "fl_setting.json", "w") as fd:
json.dump(settings, fd, indent=4)
except FileExistsError:
pass
logging.basicConfig(format='%(asctime)s - %(message)s',
filename=run_path + '/run.log', level=logging.INFO, filemode='w')
logging.info("Started")
logging.info(f"Settings Hash: {run_hash}")
logging.info("{" + "\n".join("{!r}: {!r},".format(k, v) for k, v in settings.items()) + "}")
flserver.initialize()
if args.plot:
import utils.plots as plots
flserver.set_plotting_callback(plots.plot_config, run_path)
try:
flserver.run()
except KeyboardInterrupt:
pass
if args.plot:
plots.plot_config(run_path)
try:
os.unlink("latest_run")
except FileNotFoundError:
pass
os.symlink(run_path, "latest_run")