Skip to content

Latest commit

 

History

History
116 lines (82 loc) · 3.67 KB

README.md

File metadata and controls

116 lines (82 loc) · 3.67 KB

Introduction

Note: this code is in good working order, but further development is taking place at ndarray-v2

This project is a header-only implementation of a numpy-like ndarray template for pure C++14. It should be comparable to (but smaller and more modern than) Boost.MultiArray.

If you are interested in a featureful and professionally maintained numerical package for C++, you should check out xtensor.

However, if you prefer a lightweight ndarray container and not much else, this project might interest you.

The code should be transparent enough that you can modify it without much trouble. Pull requests welcome!

Overview

ndarray objects use the same memory model as np.array in numpy. The array itself is a lightweight stack object containing a std::shared_ptr to a memory block, which may be in use by multiple arrays. Const-correctness is respected: const arrays cannot modify their memory buffers, and non-const arrays are constructed from const arrays by creating a new memory buffer.

  // Basic usage:

  nd::ndarray<int, 3> A(100, 200, 10);
  nd::ndarray<int, 2> B = A[0]; // B.shape() == {200, 10} and B.shares(A)
  nd::ndarray<int, 1> C = B[0]; // C.shape() == {10} and C.shares(B)
  nd::ndarray<int, 0> D = C[0]; // D.shape() == {} and D.shares(C)
  double d = D; // rank-0 arrays cast to underlying scalar type
  double e = A[0][0][0]; // d == e (slow)
  double f = A(0, 0, 0); // e == f (fast)
  // Creating a 1D array from an initializer list

  auto A = nd::ndarray<double, 1>{0, 1, 2, 3};
  A(0) = 3.0;
  A(1) = 2.0;
  // Multi-dimensional selections

  auto A = nd::ndarray<int, 3>(100, 200, 10);
  auto B = A.select(0, std::make_tuple(100, 150), 0); // A.rank == 1 and A.shares(B)
  
  auto _ = nd::axis::all();
  auto C = A.select(0, _|100|150, 0); // (B == C).all()
  // STL-compatible iteration

  auto x = 0.0;
  auto A = nd::ndarray<double, 3>(100, 200, 10);

  for (auto &a : A[50])
  {
    a = x += 1.0;
  }
  auto vector_data = std::vector<double>(A[50].begin(), A[50].end());
  // Respects const-correctness

  // If A is non-const, then
  {
    nd::ndarray<double, 1> A(100); // A[0].shares(A)
    A(0) = 1.0; // OK
    A.select(_|0|5) = 2.0; // OK
    nd::ndarray<double, 1> B = A; // B.is(A)
  }

  // whereas if A is const,
  {
    const nd::ndarray<double, 1> A(100); // A[0].shares(A), however
    const nd::ndarray<double, 1> B = A;  // ! B.shares(A), and
    nd::ndarray<double, 1> C = A;        // ! C.shares(A),
    // since otherwise C[0] = 1.0 would modify A's buffer and A is const.
    auto D = A[0]; // D.shares(A), however D.is_const_ref(), which has only const methods.

    // A(0) = 1.0; // compile error
    // A.select(_|0|5) = 2.0; // compile error
  }
  // Basic arithmetic and comparison expressions

  auto A = nd::arange<int>(10);
  auto B = nd::ones<int>(10);
  auto C = (A + B) / 2.0;
  assert(! (A == B).all());
  assert(  (A == B).any());

Priority To-Do items:

  • Generalize scalar data type from double
  • Basic arithmetic operations
  • Allow for skips along ndarray axes
  • Support for comparison operators >=, <=, etc.
  • Indexing via linear selections, enabling e.g. A[A > 0] = ...
  • Relative indexing (negative counts backwards from end)
  • Array transpose (and general axis permutation)
  • Factories: zeros, ones, arange
  • Custom allocators (allow e.g. numpy interoperability or user memory pool)
  • Binary serialization
  • Bounds checking
  • Enable/disable bounds-checking at compile time