-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_cal.py
140 lines (117 loc) · 4.47 KB
/
train_cal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from typing import List
import argparse
import random
import os
import torch
import torch.nn as nn
import numpy as np
import xgboost as xgb
from dataset import build, read_score_data, convert_data_to_dmatrix
SEED = 2020
random.seed(SEED)
np.random.seed(SEED)
torch.random.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
def read_data(filename: str, mixture: str, split: str, **kwargs):
scores_li: List[List[float]] = []
input_len_li: List[List[int]] = []
target_len_li: List[List[int]] = []
score_var_li: List[List[float]] = []
targets_li: List[List[float]] = []
inp_perp_li: List[List[float]] = []
for sample in read_score_data(filename, mixture, split, **kwargs):
if np.sum(sample['target']) <= 0: # skip examples without gold
continue
scores_li.append(sample['log_prob'])
score_var_li.append(sample['prob_var'])
input_len_li.append(sample['input_len'])
target_len_li.append(sample['target_len'])
targets_li.append(sample['target'])
if 'inp_perp' in sample:
inp_perp_li.append(sample['inp_perp'])
data = {'log_prob': np.array(scores_li),
'prob_var': np.array(score_var_li),
'input_len': np.array(input_len_li),
'target_len': np.array(target_len_li),
'target': np.array(targets_li)}
if len(inp_perp_li) > 0:
data['inp_perp'] = np.array(inp_perp_li)
return data
class TempCal(nn.Module):
def __init__(self):
super(TempCal, self).__init__()
self._temp = nn.Parameter(torch.tensor(0.0))
@property
def temp(self):
return torch.exp(self._temp)
def forward(self, scores, targets):
mask = scores.ne(1.0).float()
logits = torch.logsumexp(scores / self.temp + torch.log(targets.float()), -1)
log_z = torch.logsumexp(scores / self.temp + torch.log(mask), -1)
log_prob = logits - log_z
loss = -log_prob.mean()
return loss
def train_temp(args, data):
temp_cal = TempCal()
temp_cal.train()
optimizer = torch.optim.Adam(temp_cal.parameters(), lr=1e-3)
scores_li = data['log_prob']
targets_li = data['target']
batch_size = 256
epoch = 300
early_stop = 30
es = 0
num_batch = int(np.ceil(len(scores_li) / batch_size))
min_loss = 1e10
min_temp = None
for e in range(epoch):
loss_li = []
perm = np.random.permutation(len(scores_li))
for b in range(num_batch):
bind = perm[b * batch_size:b * batch_size + batch_size]
scores = nn.utils.rnn.pad_sequence([torch.tensor(s) for s in scores_li[bind]], batch_first=True,
padding_value=1.0)
targets = nn.utils.rnn.pad_sequence([torch.tensor(t) for t in targets_li[bind]], batch_first=True)
loss = temp_cal(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_li.append(loss.detach().cpu().numpy())
loss = np.mean(loss_li)
if loss < min_loss:
min_loss = loss
min_temp = temp_cal.temp.detach().cpu().numpy()
es = 0
else:
es += 1
if es >= early_stop:
print('early stop')
break
print(e, loss, temp_cal.temp)
print('final loss {}, final temp {}'.format(min_loss, min_temp))
def train_xgb(args, data):
dm_train, dm_dev = convert_data_to_dmatrix(data, split=0.8)
print('#train {}, #dev {}'.format(dm_train.num_row(), dm_dev.num_row()))
param = {'max_depth': 4, 'subsample': 0.8, 'num_parallel_tree': 5, 'objective': 'binary:logistic'}
evals = [(dm_train, 'train'), (dm_dev, 'eval')]
num_round = 100
bst = xgb.train(param, dm_train, num_round, evals=evals, early_stopping_rounds=5)
os.makedirs(os.path.dirname(args.out), exist_ok=True)
bst.save_model(args.out)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='visulize log prob per tokens')
parser.add_argument('--model', type=str, help='model to train', choices=['xgb', 'temp'])
parser.add_argument('--mix', type=str, help='mixture', default='uq_sub_test_mix')
parser.add_argument('--split', type=str, help='split', default='dev')
parser.add_argument('--score', type=str, help='score file')
parser.add_argument('--inp_perp', type=str, help='feature of input perplexity', default=None)
parser.add_argument('--out', type=str, help='output file')
args = parser.parse_args()
# build tasks and mixtures
build(neg_method='weight')
data = read_data(args.score, args.mix, args.split, inp_perp=args.inp_perp)
print('#examples {}'.format(len(data['target'])))
if args.model == 'temp':
train_temp(args, data)
elif args.model == 'xgb':
train_xgb(args, data)