-
Notifications
You must be signed in to change notification settings - Fork 8
/
Terms.hs
197 lines (157 loc) · 6.31 KB
/
Terms.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
{-# LANGUAGE GADTs, KindSignatures, OverloadedStrings, TypeSynonymInstances, RankNTypes, PatternGuards #-}
module Terms where
import Prelude hiding (length,elem,foldl,all,concatMap,and,drop,concat)
import Basics
import Display
import Data.Foldable
import Control.Arrow (first, second)
import Data.Sequence
import Options
type NF = Term
type Neutral = Term
-- | Representation of terms.
data Term :: * where
Star :: Position -> Sort -> NF
Pi :: Ident -> NF -> NF -> NF
Lam :: Ident -> NF -> NF -> NF
App :: Neutral -> NF -> Neutral
Sigma :: Position -> [(String,NF)] -> NF
Pair :: Position -> [(String,NF)] -> NF -- Note: Unlike Sigma, Pairs do not bind variables
Proj :: Neutral -> String -> Neutral
Fin :: Position -> [String] -> NF
Tag :: Position -> String -> NF
Cas :: Position -> [(String, NF)] -> NF
V :: Position -> Int -> -- ^ deBruijn index
Neutral
Hole :: Position -> String -> Neutral
This :: NF -- ^ reference to the module currently type-checked
Ann :: Neutral -> NF -> NF -- ^ type annotation
deriving (Show)
termPosition t = case t of
(Hole p _) -> p
(Star p _) -> p
(V p _) -> p
(Pi i _ _) -> identPosition i
(Sigma p _) -> p
(Lam i _ _) -> identPosition i
(Pair p _ ) -> p
(App x y) -> s x
(Proj x _) -> s x
(Ann x _) -> s x
(Fin x _) -> x
(Tag x _) -> x
(Cas x _) -> x
_ -> dummyPosition
where s = termPosition
type Subst = [NF]
var = V dummyPosition
hole = Hole dummyPosition
-- | The identity substitution
identity = map var [0..]
subst0 :: NF -> Subst
subst0 u = u:identity
-- | Weakening
wkn :: Int -> Subst
wkn n = map var [n..]
wk = wkn 1
-- | Hereditary substitution application
apply :: Subst -> Term -> NF
apply f t = case t of
Star p x -> Star p x
Lam i ty bo -> Lam i (s ty) (s' bo)
Pair i fs -> Pair i (map (second s) fs)
Pi i a b -> Pi i (s a) (s' b)
Sigma i [] -> Sigma i []
Sigma i ((f,x):xs) -> let Sigma _ xs' = s' (Sigma i xs) in Sigma i ((f,s x):xs')
(App a b) -> app (s a) (s b)
(Proj x k) -> proj (s x) k
Hole p x -> Hole p x
V _ x -> f !! x
This -> This
Ann x t -> ann (s x) (s t)
Cas p cs -> Cas p (map (second s) cs)
Fin p x -> Fin p x
Tag p x -> Tag p x
where s' = apply (var 0 : wk ∘ f)
s = apply f
(∙) = apply
σ ∘ ρ = map (apply σ) ρ
ann x t = Ann x t
-- | Application that computes
app :: NF -> NF -> NF
app (Lam i _ bo) u = subst0 u ∙ bo
app (Cas _ cs) (Tag _ t) | Just x <- lookup t cs = x
app n u = App n u
-- | Projection that computes
proj :: NF -> String -> NF
proj (Pair _ fs) f | Just x <- lookup f fs = x
proj x k = Proj x k
-----------------------------------
-- Display
dec xs = [ x - 1 | x <- xs, x > 0]
freeVars :: Term -> [Int]
freeVars (Pi _ a b) = freeVars a <> (dec $ freeVars b)
freeVars (Sigma _ []) = []
freeVars (Sigma p ((_,x):xs)) = freeVars x <> (dec $ freeVars (Sigma p xs))
freeVars (V _ x) = [x]
freeVars (App a b) = freeVars a <> freeVars b
freeVars (Lam _ ty b) = freeVars ty <> (dec $ freeVars b)
freeVars (Star _ _) = mempty
freeVars (Hole _ _) = mempty
freeVars (Pair _ xs) = concatMap (freeVars . snd) xs
freeVars (Proj x _) = freeVars x
freeVars This = []
freeVars (Ann x t) = freeVars x <> freeVars t
freeVars (Fin _ _) = []
freeVars (Tag _ _) = []
freeVars (Cas _ cs) = concatMap (freeVars . snd) cs
iOccursIn :: Int -> Term -> Bool
iOccursIn x t = x `elem` (freeVars t)
allocName :: DisplayContext -> Ident -> Ident
allocName g s
| s `elem` g = allocName g (modId (++ "'") s)
| otherwise = s
cPrint :: Int -> DisplayContext -> Term -> Doc
cPrint p ii (Hole _ x) = text x
cPrint p ii (Star _ i) = pretty i
cPrint p ii (V _ k)
| k < 0 || k >= length ii = text "<global " <> pretty (k - length ii) <> ">"
| otherwise = pretty (ii `index` k)
cPrint p ii (Proj x f) = cPrint p ii x <> "." <> text f
cPrint p ii t@(App _ _) = let (fct,args) = nestedApp t in
parensIf (p > 3) (cPrint 3 ii fct <+> sep [ cPrint 4 ii a | a <- args])
cPrint p ii t@(Pi _ _ _) = parensIf (p > 1) (printBinders "→" ii mempty $ nestedPis t)
cPrint p ii t@(Sigma _ _) = parensIf (p > 1) (printBinders "×" ii mempty $ nestedSigmas t)
cPrint p ii (t@(Lam _ _ _)) = parensIf (p > 1) (nestedLams ii mempty t)
cPrint p ii (Pair _ fs) = parensIf (p > (-1)) (sep (punctuate comma [text name <+> text "=" <+> cPrint 0 ii x | (name,x) <- fs ]))
cPrint p ii This = "this"
cPrint p ii (Ann x t) = parensIf (p > 0) (cPrint 0 ii x <+> ":" <+> cPrint 0 ii t)
cPrint p ii (Fin _ ts) = "[" <> sep (punctuate comma (map text ts)) <> "]"
cPrint p ii (Tag _ t) = "'" <> text t
cPrint p ii (Cas _ cs) = "case {" <> sep (punctuate ";" [text c <> "↦" <> cPrint 0 ii a | (c,a) <- cs]) <> "}"
-- FIXME: should remember the variable names in the substitution
dispEnv :: DisplayContext -> [(Int,NF)] -> [Doc]
dispEnv ii g = [pretty i <> "↦" <> cPrint 0 ii v | (i,v) <- g]
nestedPis :: NF -> ([(Ident,Bool,NF)], NF)
nestedPis (Pi i a b) = (first ([(i,0 `iOccursIn` b,a)] ++)) (nestedPis b)
nestedPis x = ([],x)
nestedSigmas :: NF -> ([(Ident,Bool,NF)], NF)
nestedSigmas (Sigma p ((i,x):xs)) = (first ([(synthId i,0 `iOccursIn` Sigma p xs,x)] ++)) (nestedSigmas (Sigma p xs))
nestedSigmas (Sigma p []) = ([],Hole p "⊤")
printBinders :: Doc -> DisplayContext -> Seq Doc -> ([(Ident,Bool,NF)], NF) -> Doc
printBinders sep ii xs (((x,occurs,a):pis),b) = printBinders sep (i <| ii) (xs |> (printBind' ii i occurs a <+> sep)) (pis,b)
where i = allocName ii x
printBinders _ ii xs ([],b) = sep $ toList $ (xs |> cPrint 1 ii b)
nestedLams :: DisplayContext -> Seq Doc -> Term -> Doc
nestedLams ii xs (Lam x ty c) = nestedLams (i <| ii) (xs |> parens (pretty i <+> ":" <+> cPrint 0 ii ty)) c
where i = allocName ii x
nestedLams ii xs t = (text "\\ " <> (sep $ toList $ (xs |> "->")) <> " " <> nest 3 (cPrint 0 ii t))
printBind' ii name occurs d = case not (isDummyId name) || occurs of
True -> parens (pretty name <+> ":" <+> cPrint 0 ii d)
False -> cPrint 2 ii d
nestedApp :: Neutral -> (Neutral,[NF])
nestedApp (App f a) = (second (++ [a])) (nestedApp f)
nestedApp t = (t,[])
prettyTerm = cPrint (-100)
instance Pretty Term where
pretty = prettyTerm mempty