forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 1
/
export_meta_llama_bin.py
112 lines (92 loc) · 3.67 KB
/
export_meta_llama_bin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
This script exports the Llama 2 weights in llama2c.bin format.
"""
import os
import sys
import struct
from pathlib import Path
import json
import torch
from model import precompute_freqs_cis
def export(p, state_dict, filepath='model.bin'):
"""export the model weights in fp32 into .bin file to be read from C"""
f = open(filepath, 'wb')
def serialize(key):
print(f"writing {key}...")
t = state_dict[key].contiguous().view(-1).type(torch.float32).numpy()
f.write(memoryview(t))
del state_dict[key]
# first write out the header
hidden_dim = state_dict['layers.0.feed_forward.w1.weight'].shape[0]
p['vocab_size'] = 32000
p['max_seq_len'] = 2048
n_kv_heads = p.get('n_kv_heads') or p['n_heads']
header = struct.pack(
'iiiiiii',
p['dim'], hidden_dim, p['n_layers'], p['n_heads'],
n_kv_heads, -p['vocab_size'], p['max_seq_len']
)
# NOTE ABOVE: -ve vocab_size is indicating that the classifier weights are present
# in the checkpoint and should be loaded.
f.write(header)
# next write out the embedding weights
print("writing tok_embeddings...")
serialize('tok_embeddings.weight')
# now all the layers
# attention weights
for i in range(p['n_layers']): serialize(f'layers.{i}.attention_norm.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wq.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wk.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wv.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wo.weight')
# ffn weights
for i in range(p['n_layers']): serialize(f'layers.{i}.ffn_norm.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w1.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w2.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w3.weight')
# final rmsnorm
serialize('norm.weight')
# freqs_cis
freqs_cis = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2)
state_dict['freqs_cis.real'] = freqs_cis.real[:p['max_seq_len']]
state_dict['freqs_cis.imag'] = freqs_cis.imag[:p['max_seq_len']]
serialize('freqs_cis.real')
serialize('freqs_cis.imag')
# finally write the output weights
serialize('output.weight')
f.close()
print(f"wrote {filepath}")
def concat_weights(models):
state_dict = {}
for name in list(models[0]):
tensors = [model[name] for model in models]
if len(tensors) == 1 or len(tensors[0].shape) == 1:
state_dict[name] = tensors[0]
continue
is_axis_1 = (
name.startswith('tok_embeddings.')
or name.endswith('.attention.wo.weight')
or name.endswith('.feed_forward.w2.weight')
)
axis = 1 if is_axis_1 else 0
state_dict[name] = torch.cat(tensors, dim=axis)
for model in models:
del model[name]
return state_dict
def load_and_export(model_path, output_path):
params_path = os.path.join(model_path, 'params.json')
with open(params_path) as f:
params = json.load(f)
print(params)
model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth')))
models = [torch.load(p, map_location='cpu') for p in model_paths]
state_dict = concat_weights(models)
del models
export(params, state_dict, output_path)
if __name__ == '__main__':
if len(sys.argv) == 1:
print('[Llama model folder path] [output path]')
exit()
model_path = sys.argv[1]
output_path = sys.argv[2]
load_and_export(model_path, output_path)