-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_h5model.py
49 lines (37 loc) · 1.21 KB
/
infer_h5model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import numpy as np
import pandas as pd
import sys
import os
from PIL import Image
import time
import PIL.Image as pilimg
from tensorflow.keras.models import load_model
import tensorflow as tf
tf.device("/cpu:0")
def load_trained_model():
model_name = "C:/Users/82109/Desktop/model17_Dense.h5" # h5모델 경로 넣기
function_model = load_model(model_name)
print('model load 완료')
return function_model
def img2numpy(jpg):
img = pilimg.open(jpg)
resize_img = img.resize((224, 224))
return resize_img
if __name__ == '__main__':
test_model = load_trained_model()
jpg = 'C:/Users/82109/Desktop/parrot.jpg' # 이미지 경로
img_np = np.array(img2numpy(jpg))
print(type(img_np))
print(img_np.shape)
shape =img_np.shape
img_np = img_np.reshape(-1,112,112,3)
print(img_np.shape)
print(time.strftime('%c', time.localtime(time.time())))
start = time.time()
for i in range(0,100):
test_model.predict(img_np)# 함수안에 추론할 이미지를 >>numpy배열로 바꾸기
print(time.strftime('%c', time.localtime(time.time())))
t = time.time() - start
print(t)
print(t / 100)