-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
798 lines (694 loc) · 29.9 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
''' Layers
This file contains various layers for the BigGAN models.
'''
import numpy as np
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
import utils
from sync_batchnorm import SynchronizedBatchNorm2d as SyncBN2d
import functools
import math
import optimizers
# Projection of x onto y
def proj(x, y):
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
# Orthogonalize x wrt list of vectors ys
def gram_schmidt(x, ys):
for y in ys:
x = x - proj(x, y)
return x
# Apply num_itrs steps of the power method to estimate top N singular values.
def power_iteration(W, u_, update=True, eps=1e-12):
# Lists holding singular vectors and values
us, vs, svs = [], [], []
for i, u in enumerate(u_):
# Run one step of the power iteration
with torch.no_grad():
v = torch.matmul(u, W)
# Run Gram-Schmidt to subtract components of all other singular vectors
v = F.normalize(gram_schmidt(v, vs), eps=eps)
# Add to the list
vs += [v]
# Update the other singular vector
u = torch.matmul(v, W.t())
# Run Gram-Schmidt to subtract components of all other singular vectors
u = F.normalize(gram_schmidt(u, us), eps=eps)
# Add to the list
us += [u]
if update:
u_[i][:] = u
# Compute this singular value and add it to the list
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
#svs += [torch.sum(F.linear(u, W.transpose(0, 1)) * v)]
return svs, us, vs
# Convenience passthrough function
class identity(nn.Module):
def forward(self, input):
return input
# Spectral normalization base class
class SN(object):
def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12):
# Number of power iterations per step
self.num_itrs = num_itrs
# Number of singular values
self.num_svs = num_svs
# Transposed?
self.transpose = transpose
# Epsilon value for avoiding divide-by-0
self.eps = eps
# Register a singular vector for each sv
for i in range(self.num_svs):
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
self.register_buffer('sv%d' % i, torch.ones(1))
# Singular vectors (u side)
@property
def u(self):
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
# Singular values;
# note that these buffers are just for logging and are not used in training.
@property
def sv(self):
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
# Compute the spectrally-normalized weight
def W_(self):
W_mat = self.weight.view(self.weight.size(0), -1)
if self.transpose:
W_mat = W_mat.t()
# Apply num_itrs power iterations
for _ in range(self.num_itrs):
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
# Update the svs
if self.training:
with torch.no_grad(): # Make sure to do this in a no_grad() context or you'll get memory leaks!
for i, sv in enumerate(svs):
self.sv[i][:] = sv
return self.weight / svs[0]
# 2D Conv layer with spectral norm
class SNConv2d(nn.Conv2d, SN):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
def forward(self, x):
return F.conv2d(x, self.W_(), self.bias, self.stride,
self.padding, self.dilation, self.groups)
# Linear layer with spectral norm
class SNLinear(nn.Linear, SN):
def __init__(self, in_features, out_features, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Linear.__init__(self, in_features, out_features, bias)
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
def forward(self, x):
return F.linear(x, self.W_(), self.bias)
# Embedding layer with spectral norm
# We use num_embeddings as the dim instead of embedding_dim here
# for convenience sake
class SNEmbedding(nn.Embedding, SN):
def __init__(self, num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2, scale_grad_by_freq=False,
sparse=False, _weight=None,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Embedding.__init__(self, num_embeddings, embedding_dim, padding_idx,
max_norm, norm_type, scale_grad_by_freq,
sparse, _weight)
SN.__init__(self, num_svs, num_itrs, num_embeddings, eps=eps)
def forward(self, x):
return F.embedding(x, self.W_())
# A non-local block as used in SA-GAN
# Note that the implementation as described in the paper is largely incorrect;
# refer to the released code for the actual implementation.
class Attention(nn.Module):
def __init__(self, ch, which_conv=SNConv2d, name='attention'):
super(Attention, self).__init__()
# Channel multiplier
self.ch = ch
self.which_conv = which_conv
self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
# Learnable gain parameter
self.gamma = P(torch.tensor(0.), requires_grad=True)
def forward(self, x, y=None):
# Apply convs
theta = self.theta(x)
phi = F.max_pool2d(self.phi(x), [2,2])
g = F.max_pool2d(self.g(x), [2,2])
# Perform reshapes
theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
# Matmul and softmax to get attention maps
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
# Attention map times g path
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
return self.gamma * o + x
# Fused batchnorm op
def fused_bn(x, mean, var, gain=None, bias=None, eps=1e-5):
# Apply scale and shift--if gain and bias are provided, fuse them here
# Prepare scale
scale = torch.rsqrt(var + eps)
# If a gain is provided, use it
if gain is not None:
scale = scale * gain
# Prepare shift
shift = mean * scale
# If bias is provided, use it
if bias is not None:
shift = shift - bias
return x * scale - shift
#return ((x - mean) / ((var + eps) ** 0.5)) * gain + bias # The unfused way.
# Manual BN
# Calculate means and variances using mean-of-squares minus mean-squared
def manual_bn(x, gain=None, bias=None, return_mean_var=False, eps=1e-5):
# Cast x to float32 if necessary
float_x = x.float()
# Calculate expected value of x (m) and expected value of x**2 (m2)
# Mean of x
m = torch.mean(float_x, [0, 2, 3], keepdim=True)
# Mean of x squared
m2 = torch.mean(float_x ** 2, [0, 2, 3], keepdim=True)
# Calculate variance as mean of squared minus mean squared.
var = (m2 - m **2)
# Cast back to float 16 if necessary
var = var.type(x.type())
m = m.type(x.type())
# Return mean and variance for updating stored mean/var if requested
if return_mean_var:
return fused_bn(x, m, var, gain, bias, eps), m.squeeze(), var.squeeze()
else:
return fused_bn(x, m, var, gain, bias, eps)
# My batchnorm, supports standing stats
class myBN(nn.Module):
def __init__(self, num_channels, eps=1e-5, momentum=0.1):
super(myBN, self).__init__()
# momentum for updating running stats
self.momentum = momentum
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
# Register buffers
self.register_buffer('stored_mean', torch.zeros(num_channels))
self.register_buffer('stored_var', torch.ones(num_channels))
self.register_buffer('accumulation_counter', torch.zeros(1))
# Accumulate running means and vars
self.accumulate_standing = False
# reset standing stats
def reset_stats(self):
self.stored_mean[:] = 0
self.stored_var[:] = 0
self.accumulation_counter[:] = 0
def forward(self, x, gain, bias):
if self.training:
out, mean, var = manual_bn(x, gain, bias, return_mean_var=True, eps=self.eps)
# If accumulating standing stats, increment them
if self.accumulate_standing:
self.stored_mean[:] = self.stored_mean + mean.data
self.stored_var[:] = self.stored_var + var.data
self.accumulation_counter += 1.0
# If not accumulating standing stats, take running averages
else:
self.stored_mean[:] = self.stored_mean * (1 - self.momentum) + mean * self.momentum
self.stored_var[:] = self.stored_var * (1 - self.momentum) + var * self.momentum
return out
# If not in training mode, use the stored statistics
else:
mean = self.stored_mean.view(1, -1, 1, 1)
var = self.stored_var.view(1, -1, 1, 1)
# If using standing stats, divide them by the accumulation counter
if self.accumulate_standing:
mean = mean / self.accumulation_counter
var = var / self.accumulation_counter
return fused_bn(x, mean, var, gain, bias, self.eps)
# Simple function to handle groupnorm norm stylization
def groupnorm(x, norm_style):
# If number of channels specified in norm_style:
if 'ch' in norm_style:
ch = int(norm_style.split('_')[-1])
groups = max(int(x.shape[1]) // ch, 1)
# If number of groups specified in norm style
elif 'grp' in norm_style:
groups = int(norm_style.split('_')[-1])
# If neither, default to groups = 16
else:
groups = 16
return F.group_norm(x, groups)
# Class-conditional bn
# output size is the number of channels, input size is for the linear layers
# Andy's Note: this class feels messy but I'm not really sure how to clean it up
# Suggestions welcome! (By which I mean, refactor this and make a pull request
# if you want to make this more readable/usable).
class ccbn(nn.Module):
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1,
cross_replica=False, mybn=False, norm_style='bn',):
super(ccbn, self).__init__()
self.output_size, self.input_size = output_size, input_size
# Prepare gain and bias layers
self.gain = which_linear(input_size, output_size)
self.bias = which_linear(input_size, output_size)
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
# Use cross-replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# Norm style?
self.norm_style = norm_style
if self.cross_replica:
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
elif self.mybn:
self.bn = myBN(output_size, self.eps, self.momentum)
elif self.norm_style in ['bn', 'in']:
self.register_buffer('stored_mean', torch.zeros(output_size))
self.register_buffer('stored_var', torch.ones(output_size))
def forward(self, x, y):
# Calculate class-conditional gains and biases
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
bias = self.bias(y).view(y.size(0), -1, 1, 1)
# If using my batchnorm
if self.mybn or self.cross_replica:
return self.bn(x, gain=gain, bias=bias)
# else:
else:
if self.norm_style == 'bn':
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'in':
out = F.instance_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'gn':
out = groupnorm(x, self.normstyle)
elif self.norm_style == 'nonorm':
out = x
return out * gain + bias
def extra_repr(self):
s = 'out: {output_size}, in: {input_size},'
s +=' cross_replica={cross_replica}'
return s.format(**self.__dict__)
# Normal, non-class-conditional BN
class bn(nn.Module):
def __init__(self, output_size, eps=1e-5, momentum=0.1,
cross_replica=False, mybn=False):
super(bn, self).__init__()
self.output_size= output_size
# Prepare gain and bias layers
self.gain = P(torch.ones(output_size), requires_grad=True)
self.bias = P(torch.zeros(output_size), requires_grad=True)
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
# Use cross-replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
if self.cross_replica:
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
elif mybn:
self.bn = myBN(output_size, self.eps, self.momentum)
# Register buffers if neither of the above
else:
self.register_buffer('stored_mean', torch.zeros(output_size))
self.register_buffer('stored_var', torch.ones(output_size))
def forward(self, x, y=None):
if self.cross_replica or self.mybn:
gain = self.gain.view(1,-1,1,1)
bias = self.bias.view(1,-1,1,1)
return self.bn(x, gain=gain, bias=bias)
else:
return F.batch_norm(x, self.stored_mean, self.stored_var, self.gain,
self.bias, self.training, self.momentum, self.eps)
class ccbn_1d(nn.Module):
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1,
cross_replica=False, mybn=False, norm_style='bn',):
super(ccbn, self).__init__()
self.output_size, self.input_size = output_size, input_size
# Prepare gain and bias layers
self.gain = which_linear(input_size, output_size)
self.bias = which_linear(input_size, output_size)
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
# Use cross-replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# Norm style?
self.norm_style = norm_style
if self.cross_replica:
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
elif self.mybn:
self.bn = myBN(output_size, self.eps, self.momentum)
elif self.norm_style in ['bn', 'in']:
self.register_buffer('stored_mean', torch.zeros(output_size))
self.register_buffer('stored_var', torch.ones(output_size))
def forward(self, x, y):
# Calculate class-conditional gains and biases
gain = (1 + self.gain(y)).view(y.size(0), -1)
bias = self.bias(y).view(y.size(0), -1)
# If using my batchnorm
if self.mybn or self.cross_replica:
return self.bn(x, gain=gain, bias=bias)
# else:
else:
if self.norm_style == 'bn':
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'in':
out = F.instance_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'gn':
out = groupnorm(x, self.normstyle)
elif self.norm_style == 'nonorm':
out = x
return out * gain + bias
def extra_repr(self):
s = 'out: {output_size}, in: {input_size},'
s +=' cross_replica={cross_replica}'
return s.format(**self.__dict__)
# Normal, non-class-conditional BN
class bn_1d(nn.Module):
def __init__(self, output_size, eps=1e-5, momentum=0.1,
cross_replica=False, mybn=False):
super(bn, self).__init__()
self.output_size= output_size
# Prepare gain and bias layers
self.gain = P(torch.ones(output_size), requires_grad=True)
self.bias = P(torch.zeros(output_size), requires_grad=True)
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
# Use cross-replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
if self.cross_replica:
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
elif mybn:
self.bn = myBN(output_size, self.eps, self.momentum)
# Register buffers if neither of the above
else:
self.register_buffer('stored_mean', torch.zeros(output_size))
self.register_buffer('stored_var', torch.ones(output_size))
def forward(self, x, y=None):
if self.cross_replica or self.mybn:
gain = self.gain.view(1,-1)
bias = self.bias.view(1,-1)
return self.bn(x, gain=gain, bias=bias)
else:
return F.batch_norm(x, self.stored_mean, self.stored_var, self.gain,
self.bias, self.training, self.momentum, self.eps)
# Generator blocks
# Note that this class assumes the kernel size and padding (and any other
# settings) have been selected in the main generator module and passed in
# through the which_conv arg. Similar rules apply with which_bn (the input
# size [which is actually the number of channels of the conditional info] must
# be preselected)
class StyleBlock(nn.Module):
def __init__(self, input_size, output_size, which_linear = SNLinear,
activation = None, n_mlp = 4):
blocks = []
blocks.append(SNLinear(input_size, output_size))
for i in range(n_mlp - 1):
blocks.append(SNLinear(output_size, output_size))
self.blocks = nn.ModuleList(blocks)
self.activation = activation
self.n_mlp = n_mlp
def forward(self, z):
for i in range(self.n_mlp):
z = self.activation(self.blocks[i](z))
return z
class GBlock(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d, which_bn=bn, activation=None,
upsample=None):
super(GBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.which_conv, self.which_bn = which_conv, which_bn
self.activation = activation
self.upsample = upsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
self.learnable_sc = in_channels != out_channels or upsample
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
# Batchnorm layers
self.bn1 = self.which_bn(in_channels)
self.bn2 = self.which_bn(out_channels)
# upsample layers
self.upsample = upsample
def forward(self, x, y):
h = self.activation(self.bn1(x, y))
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
h = self.conv1(h)
h = self.activation(self.bn2(h, y))
h = self.conv2(h)
if self.learnable_sc:
x = self.conv_sc(x)
return h + x
# Residual block for the discriminator
class DBlock(nn.Module):
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
preactivation=False, activation=None, downsample=None,):
super(DBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
# If using wide D (as in SA-GAN and BigGAN), change the channel pattern
self.hidden_channels = self.out_channels if wide else self.in_channels
self.which_conv = which_conv
self.preactivation = preactivation
self.activation = activation
self.downsample = downsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
def shortcut(self, x):
if self.preactivation:
if self.learnable_sc:
x = self.conv_sc(x)
if self.downsample:
x = self.downsample(x)
else:
if self.downsample:
x = self.downsample(x)
if self.learnable_sc:
x = self.conv_sc(x)
return x
def forward(self, x):
if self.preactivation:
# h = self.activation(x) # NOT TODAY SATAN
# Andy's note: This line *must* be an out-of-place ReLU or it
# will negatively affect the shortcut connection.
h = F.relu(x)
else:
h = x
h = self.conv1(h)
h = self.conv2(self.activation(h))
if self.downsample:
h = self.downsample(h)
return h + self.shortcut(x)
# dogball
class Prior(nn.Module):
def __init__(self, G_batch_size=100, batch_size = 100, dim_z=128, n_classes=1000, sigma=0.5, is_y_uniform=False, prior_type = 'default',
G_fp16= False, arch_aux = 0, G_param='SN', D_param='SN', device='cuda',
P_lr = 2e-4, G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
num_G_SVs=1, num_G_SV_itrs=1,
SN_eps=1e-12, G_mixed_precision=False,
num_D_SVs=1, num_D_SV_itrs=1, G_activation=nn.ReLU(inplace=True), GMM_init = 'ortho', sharpen = 1.0,
optimizer_type = 'adam', weight_decay = 5e-4,
**kwargs):
super(Prior, self).__init__()
dtype = torch.float16 if G_fp16 else torch.float32
self.dim_z = dim_z
self.sigma = sigma
self.n_classes = n_classes
self.prior_type = prior_type
self.is_y_uniform = is_y_uniform
self.bs = max(G_batch_size, batch_size)
self.sharpen = sharpen
self.weight_decay = weight_decay
import utils
self.z_, self.y_ = utils.prepare_z_y(self.bs, dim_z, n_classes, device=device, fp16=G_fp16)
self.eps_ = self.z_
which_embedding = nn.Embedding
self.sample_ = self.sample_default
self.obtain_latent_from_z_y = self.obtain_latent_from_z_y_default
self.latent_classification = self.latent_classification_default
G_activation = nn.ReLU(inplace=True)
if prior_type == 'default':
self.y_aux = (1/self.n_classes *torch.arange(self.n_classes, dtype = torch.float).reshape(1,n_classes)).cuda()
elif prior_type == 'aux':
if G_param == 'SN':
which_linear = functools.partial(SNLinear, num_svs=num_G_SVs,
num_itrs=num_G_SV_itrs, eps= SN_eps)
else:
which_linear = nn.Linear
if arch_aux == 0:
self.gen_linear = which_linear(2*dim_z, dim_z)
latent_classification = nn.Sequential(which_linear(dim_z, dim_z), G_activation,
which_linear(dim_z, n_classes), nn.Softmax())
elif arch_aux == 1:
self.gen_linear = nn.Sequential(which_linear(2*dim_z, dim_z), nn.Tanh(True))
latent_classification = nn.Sequential(which_linear(dim_z, dim_z), G_activation,
which_linear(dim_z, n_classes), nn.Softmax())
self.first_embedding = which_embedding(n_classes, dim_z)
self.sample_ = self.sample_aux
self.latent_classification = latent_classification
self.obtain_latent_from_z_y = self.obtain_latent_from_z_y_aux
elif prior_type == 'GMM':
self.init = GMM_init
self.mu_c = nn.Parameter(data=torch.zeros((n_classes, dim_z), dtype=dtype), requires_grad=True)
self.lv_c = nn.Parameter(data=torch.ones( (n_classes, dim_z), dtype=dtype), requires_grad=True)
self.phi_c = nn.Parameter(data=self.sigma*torch.ones(n_classes, dtype=dtype), requires_grad= False)
self.sample_ = self.sample_from_gmm
self.latent_classification = self.gmm_membressy2
self.obtain_latent_from_z_y = self.obtain_latent_from_z_y_gmm
if self.init == 'ortho':
init.orthogonal_(self.mu_c)
elif self.init == 'N02':
init.normal_(self.mu_c, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(self.mu_c)
elif self.init == 'mu_sep':
extra_dim = dim_z %n_classes
reap_dim = dim_z//n_classes
mu_init = 1
gmm_mu = mu_init*(1 + self.sigma) *np.hstack((np.eye(n_classes).repeat(reap_dim, 1), np.zeros((n_classes, extra_dim))))
del self.mu_c
self.mu_c = nn.Parameter(data = torch.tensor(gmm_mu, dtype=dtype), requires_grad=True)
if prior_type == 'aux' or prior_type == 'GMM':
self.lr, self.B1, self.B2, self.adam_eps = P_lr, G_B1, G_B2, adam_eps
if G_mixed_precision:
print('Using fp16 adam in Prior...')
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps= self.adam_eps)
else:
if optimizer_type == 'adam':
self.optim = optim.Adam(params=self.parameters(), lr= self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps = self.adam_eps)
elif optimizer_type == 'radam':
self.optim = optimizers.RAdam(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=self.weight_decay,
eps=self.adam_eps)
elif optimizer_type == 'ranger':
self.optim = optimizers.Ranger(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=self.weight_decay,
eps=self.adam_eps)
if is_y_uniform:
del self.y_
self.y_ = torch.arange(n_classes).repeat(self.bs//n_classes, ).to(device, device,
torch.float16 if G_fp16 else torch.float32)
def obtain_z(self):
return self.z_
def sample_noise_and_y(self):
self.z_.sample_()
self.y_.sample_()
return self.z_, self.y_
def set_grad(self, req_grad):
self.mu_c.requires_grad = bool(req_grad)
self.lv_c.requires_grad = bool(req_grad)
def set_all_grad(self, req_grad):
self.mu_c.requires_grad = bool(req_grad)
self.lv_c.requires_grad = bool(req_grad)
self.phi_c.requires_grad = bool(req_grad)
def sample_from_class(self, y_samples, scale=1.0):
bs = y_samples.size(0)
mu = self.mu_c[y_samples]
log_var = self.lv_c[y_samples]
std = my_transform_lv(log_var, self.my_sigma) / scale
epsilon = Variable(torch.randn(bs, self.latent_dim), requires_grad=False)
epsilon = epsilon.cuda()
z_samples = mu.addcmul(std, epsilon)
return z_samples
def get_phi(self):
return F.softmax(self.phi_c)
def gmm_membressy(self, z_samples):
c_mu = self.mu_c.unsqueeze(0)
c_var = self.lv_c.unsqueeze(0).exp() + self.sigma ** 2
z = z_samples.unsqueeze(1).repeat(1, c_mu.size()[0], 1)
la = (- 0.5 * (2 * math.pi * c_var).log() - (z - c_mu).pow(2) / (2 * c_var)).sum(2)
gamma = (- 0.5 * (2 * math.pi * c_var).log() - (z - c_mu).pow(2) / (2 * c_var)).sum(2).exp()
gamma = self.get_phi().unsqueeze(0) * gamma
den = gamma.sum(1).unsqueeze(1) + 1e-20
pred = gamma / den
return pred
def gmm_membressy2(self, z_samples, log = True, mse_norm = False, is_sharpen = False):
c_mu = self.mu_c.unsqueeze(0)
c_var = self.lv_c.unsqueeze(0).exp() + self.sigma ** 2
z = z_samples.unsqueeze(1).repeat(1, c_mu.size()[0], 1)
exp_part = ((z - c_mu).pow(2) / (2 * c_var)).sum(2)
dist = (- 0.5 * (2 * math.pi * c_var).log()).sum(2) - exp_part
if is_sharpen:
dist = dist/self.sharpen
closer = dist.max(1)[0].unsqueeze(1)
log_pred_final = dist - closer - torch.log ((dist - closer).exp().sum(1)).unsqueeze(1)
if log:
if not mse_norm:
return log_pred_final
else:
mse_norm = (exp_part[torch.arange(len(dist)), dist.argmax(1)]/(0.5*self.dim_z)).detach()
return log_pred_final, mse_norm
else:
if not mse_norm:
return torch.exp(log_pred_final)
else:
mse_norm = (exp_part[torch.arange(len(dist)), dist.argmax(1)]/(0.5*self.dim_z)).detach()
return torch.exp(log_pred_final), mse_norm
def latent_classification_default(self, z):
aux = self.y_aux.repeat(z.size(0), 1)
return aux
def reparameterization(self, z_mu, z_lv):
epsilon = Variable(torch.randn(z_mu.size(0), self.latent_dim), requires_grad=False)
if self.mu_c.is_cuda:
epsilon = epsilon.cuda()
z_samples = z_mu.addcmul((0.5 * z_lv).exp(), epsilon)
return z_samples
def my_transform_lv(self, log_var, my_sigma):
return log_var.mul(0.5).exp() + my_sigma
def sample_default(self):
self.z_.sample_()
if not self.is_y_uniform:
self.y_.sample_()
return self.z_, self.y_
def sample_aux(self):
self.z_.sample_()
if not self.is_y_uniform:
self.y_.sample_()
return self.gen_linear(torch.cat([self.z_, self.first_embedding(self.y_)], 1)), self.y_
def sample_from_gmm(self):
self.eps_.sample_()
if not self.is_y_uniform:
self.y_.sample_()
mu = self.mu_c[self.y_]
log_var = self.lv_c[self.y_]
std = self.my_transform_lv(log_var, self.sigma)
z_samples = mu.addcmul(std, self.eps_)
return z_samples, self.y_
def obtain_latent_from_z_y_default(self, z, y):
return z
def obtain_latent_from_z_y_gmm(self, z, y):
mu = self.mu_c[y.view(-1).long()]
log_var = self.lv_c[y.view(-1).long()]
std = self.my_transform_lv(log_var, self.sigma)
z_samples = mu.addcmul(std, z)
return z_samples
def obtain_latent_from_z_y_aux(self, z, y):
return self.gen_linear(torch.cat([z, self.first_embedding(y.view(-1))], 1))