forked from sordonia/hed-dlg
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathevaluate.py
460 lines (341 loc) · 23.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#!/usr/bin/env python
"""
Evaluation script.
For paper submissions, this script should normally be run with flags --exclude-sos --plot-graphs, and both with and without the flag --exclude-stop-words.
Run example:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,allow_gc=True,scan.allow_gc=False,nvcc.flags=-use_fast_math python evaluate.py --exclude-sos --plot-graphs Output/1432724394.9_MovieScriptModel --document_ids Data/Test_Shuffled_Dataset_Labels.txt &> Test_Eval_Output.txt
"""
import argparse
import cPickle
import traceback
import logging
import time
import sys
import os
import numpy
import codecs
import math
from dialog_encdec import DialogEncoderDecoder
from numpy_compat import argpartition
from state import *
from data_iterator import get_test_iterator
import matplotlib
matplotlib.use('Agg')
import pylab
logger = logging.getLogger(__name__)
# List of all 77 English pronouns, all puntucation signs included in MovieTriples and other special tokens.
stopwords = "all another any anybody anyone anything both each each other either everybody everyone everything few he her hers herself him himself his I it its itself many me mine more most much myself neither no one nobody none nothing one one another other others ours ourselves several she some somebody someone something that their theirs them themselves these they this those us we what whatever which whichever who whoever whom whomever whose you your yours yourself yourselves . , ? ' - -- ! <unk> </s> <s>"
def parse_args():
parser = argparse.ArgumentParser("Sample (with beam-search) from the session model")
parser.add_argument("model_prefix",
help="Path to the model prefix (without _model.npz or _state.pkl)")
parser.add_argument("--test-path",
type=str, help="File of test data")
parser.add_argument("--exclude-sos", action="store_true",
help="Mask <s> from the cost computation")
parser.add_argument("--plot-graphs", action="store_true",
help="Plots frequency graphs for word perplexity and pointwise mutual information")
parser.add_argument("--exclude-stop-words", action="store_true",
help="Exclude stop words (English pronouns, puntucation signs and special tokens) from all metrics. These words make up approximate 48.37% of the training set, so removing them should focus the metrics on the topical content and ignore syntatic errors.")
parser.add_argument("--document-ids",
type=str, help="File containing document ids for each triple (one id per line, if there are multiple tabs the first entry will be taken as the doc id). If this is given the script will compute standard deviations across documents for all metrics.")
return parser.parse_args()
def main():
args = parse_args()
state = prototype_state()
state_path = args.model_prefix + "_state.pkl"
model_path = args.model_prefix + "_model.npz"
with open(state_path) as src:
state.update(cPickle.load(src))
logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
model = DialogEncoderDecoder(state)
if os.path.isfile(model_path):
logger.debug("Loading previous model")
model.load(model_path)
else:
raise Exception("Must specify a valid model path")
eval_batch = model.build_eval_function()
eval_misclass_batch = model.build_eval_misclassification_function()
if args.test_path:
state['test_triples'] = args.test_path
# Initialize list of stopwords to remove
if args.exclude_stop_words:
logger.debug("Initializing stop-word list")
stopwords_lowercase = stopwords.lower().split(' ')
stopwords_indices = []
for word in stopwords_lowercase:
if word in model.str_to_idx:
stopwords_indices.append(model.str_to_idx[word])
test_data = get_test_iterator(state)
test_data.start()
# Load document ids
if args.document_ids:
labels_file = open(args.document_ids, 'r')
labels_text = labels_file.readlines()
document_ids = numpy.zeros((len(labels_text)), dtype='int32')
for i in range(len(labels_text)):
document_ids[i] = int(labels_text[i].split('\t')[0])
unique_document_ids = numpy.unique(document_ids)
assert(test_data.data_len == document_ids.shape[0])
else:
print 'Warning no file with document ids given... standard deviations cannot be computed.'
document_ids = numpy.zeros((test_data.data_len), dtype='int32')
unique_document_ids = numpy.unique(document_ids)
# Variables to store test statistics
test_cost = 0 # negative log-likelihood
test_cost_first_utterances = 0 # marginal negative log-likelihood of first two utterances
test_cost_last_utterance_marginal = 0 # marginal (approximate) negative log-likelihood of last utterances
test_misclass = 0 # misclassification error-rate
test_misclass_first_utterances = 0 # misclassification error-rate of first two utterances
test_empirical_mutual_information = 0 # empirical mutual information between first two utterances and third utterance, where the marginal P(U_3) is approximated by P(U_3, empty, empty).
if model.bootstrap_from_semantic_information:
test_semantic_cost = 0
test_semantic_misclass = 0
test_wordpreds_done = 0 # number of words in total
test_wordpreds_done_last_utterance = 0 # number of words in last utterances
test_triples_done = 0 # number of triples evaluated
# Variables to compute negative log-likelihood and empirical mutual information per genre
compute_genre_specific_metrics = False
if hasattr(model, 'semantic_information_dim'):
compute_genre_specific_metrics = True
test_cost_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32')
test_mi_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32')
test_wordpreds_done_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32')
test_triples_done_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32')
# Number of triples in dataset
test_data_len = test_data.data_len
# Correspond to the same variables as above, but now for each triple.
# e.g. test_cost_list is a numpy array with the negative log-likelihood for each triple in the test set
test_cost_list = numpy.zeros((test_data_len,))
test_pmi_list = numpy.zeros((test_data_len,))
test_cost_last_utterance_marginal_list = numpy.zeros((test_data_len,))
test_misclass_list = numpy.zeros((test_data_len,))
test_misclass_last_utterance_list = numpy.zeros((test_data_len,))
# Array containing number of words in each triple
words_in_triples_list = numpy.zeros((test_data_len,))
# Array containing number of words in last utterance of each triple
words_in_last_utterance_list = numpy.zeros((test_data_len,))
# Prepare variables for printing the test examples the model performs best and worst on
test_extrema_setsize = min(state['track_extrema_samples_count'], test_data_len)
test_extrema_samples_to_print = min(state['print_extrema_samples_count'], test_extrema_setsize)
test_lowest_costs = numpy.ones((test_extrema_setsize,))*1000
test_lowest_triples = numpy.ones((test_extrema_setsize,state['seqlen']))*1000
test_highest_costs = numpy.ones((test_extrema_setsize,))*(-1000)
test_highest_triples = numpy.ones((test_extrema_setsize,state['seqlen']))*(-1000)
logger.debug("[TEST START]")
while True:
batch = test_data.next()
# Train finished
if not batch:
break
logger.debug("[TEST] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length']))
x_data = batch['x']
x_data_reversed = batch['x_reversed']
max_length = batch['max_length']
x_cost_mask = batch['x_mask']
x_semantic = batch['x_semantic']
x_semantic_nonempty_indices = numpy.where(x_semantic >= 0)
# Hack to get rid of start of sentence token.
if args.exclude_sos and model.sos_sym != -1:
x_cost_mask[x_data == model.sos_sym] = 0
if args.exclude_stop_words:
for word_index in stopwords_indices:
x_cost_mask[x_data == word_index] = 0
batch['num_preds'] = numpy.sum(x_cost_mask)
c, c_list = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic)
c_list = c_list.reshape((batch['x'].shape[1],max_length), order=(1,0))
c_list = numpy.sum(c_list, axis=1)
# Compute genre specific stats...
if compute_genre_specific_metrics:
non_nan_entries = numpy.array(c_list >= 0, dtype=int)
c_list[numpy.where(non_nan_entries==0)] = 0
test_cost_per_genre += (numpy.asmatrix(non_nan_entries*c_list) * numpy.asmatrix(x_semantic)).T
test_wordpreds_done_per_genre += (numpy.asmatrix(non_nan_entries*numpy.sum(x_cost_mask, axis=0)) * numpy.asmatrix(x_semantic)).T
if numpy.isinf(c) or numpy.isnan(c):
continue
test_cost += c
# Store test costs in list
nxt = min((test_triples_done+batch['x'].shape[1]), test_data_len)
triples_in_batch = nxt-test_triples_done
words_in_triples = numpy.sum(x_cost_mask, axis=0)
words_in_triples_list[(nxt-triples_in_batch):nxt] = words_in_triples[0:triples_in_batch]
# We don't need to normalzie by the number of words... not if we're computing standard deviations at least...
test_cost_list[(nxt-triples_in_batch):nxt] = c_list[0:triples_in_batch]
# Store best and worst test costs
con_costs = numpy.concatenate([test_lowest_costs, c_list[0:triples_in_batch]])
con_triples = numpy.concatenate([test_lowest_triples, x_data[:, 0:triples_in_batch].T], axis=0)
con_indices = con_costs.argsort()[0:test_extrema_setsize][::1]
test_lowest_costs = con_costs[con_indices]
test_lowest_triples = con_triples[con_indices]
con_costs = numpy.concatenate([test_highest_costs, c_list[0:triples_in_batch]])
con_triples = numpy.concatenate([test_highest_triples, x_data[:, 0:triples_in_batch].T], axis=0)
con_indices = con_costs.argsort()[-test_extrema_setsize:][::-1]
test_highest_costs = con_costs[con_indices]
test_highest_triples = con_triples[con_indices]
# Compute word-error rate
miscl, miscl_list = eval_misclass_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic)
if numpy.isinf(c) or numpy.isnan(c):
continue
test_misclass += miscl
# Store misclassification errors in list
miscl_list = miscl_list.reshape((batch['x'].shape[1],max_length), order=(1,0))
miscl_list = numpy.sum(miscl_list, axis=1)
test_misclass_list[(nxt-triples_in_batch):nxt] = miscl_list[0:triples_in_batch]
# Equations to compute empirical mutual information
# Compute marginal log-likelihood of last utterance in triple:
# We approximate it with the margina log-probabiltiy of the utterance being observed first in the triple
x_data_last_utterance = batch['x_last_utterance']
x_data_last_utterance_reversed = batch['x_last_utterance_reversed']
x_cost_mask_last_utterance = batch['x_mask_last_utterance']
x_start_of_last_utterance = batch['x_start_of_last_utterance']
# Hack to get rid of start of sentence token.
if args.exclude_sos and model.sos_sym != -1:
x_cost_mask_last_utterance[x_data_last_utterance == model.sos_sym] = 0
if args.exclude_stop_words:
for word_index in stopwords_indices:
x_cost_mask_last_utterance[x_data_last_utterance == word_index] = 0
words_in_last_utterance = numpy.sum(x_cost_mask_last_utterance, axis=0)
words_in_last_utterance_list[(nxt-triples_in_batch):nxt] = words_in_last_utterance[0:triples_in_batch]
batch['num_preds_at_utterance'] = numpy.sum(x_cost_mask_last_utterance)
marginal_last_utterance_loglikelihood, marginal_last_utterance_loglikelihood_list = eval_batch(x_data_last_utterance, x_data_last_utterance_reversed, max_length, x_cost_mask_last_utterance, x_semantic)
marginal_last_utterance_loglikelihood_list = marginal_last_utterance_loglikelihood_list.reshape((batch['x'].shape[1],max_length), order=(1,0))
marginal_last_utterance_loglikelihood_list = numpy.sum(marginal_last_utterance_loglikelihood_list, axis=1)
test_cost_last_utterance_marginal_list[(nxt-triples_in_batch):nxt] = marginal_last_utterance_loglikelihood_list[0:triples_in_batch]
# Compute marginal log-likelihood of first utterances in triple by masking the last utterance
x_cost_mask_first_utterances = numpy.copy(x_cost_mask)
for i in range(batch['x'].shape[1]):
x_cost_mask_first_utterances[x_start_of_last_utterance[i]:max_length, i] = 0
marginal_first_utterances_loglikelihood, marginal_first_utterances_loglikelihood_list = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic)
marginal_first_utterances_loglikelihood_list = marginal_first_utterances_loglikelihood_list.reshape((batch['x'].shape[1],max_length), order=(1,0))
marginal_first_utterances_loglikelihood_list = numpy.sum(marginal_first_utterances_loglikelihood_list, axis=1)
# Compute empirical mutual information and pointwise empirical mutual information
test_empirical_mutual_information += -c + marginal_first_utterances_loglikelihood + marginal_last_utterance_loglikelihood
test_pmi_list[(nxt-triples_in_batch):nxt] = (-c_list*words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list)[0:triples_in_batch]
# Compute genre specific stats...
if compute_genre_specific_metrics:
if triples_in_batch==batch['x'].shape[1]:
mi_list = (-c_list*words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list)[0:triples_in_batch]
non_nan_entries = numpy.array(mi_list >= 0, dtype=int)*numpy.array(mi_list != numpy.nan, dtype=int)
test_mi_per_genre += (numpy.asmatrix(non_nan_entries*mi_list) * numpy.asmatrix(x_semantic)).T
test_triples_done_per_genre += numpy.reshape(numpy.sum(x_semantic, axis=0), test_triples_done_per_genre.shape)
# Store log P(U_1, U_2) cost computed during mutual information
test_cost_first_utterances += marginal_first_utterances_loglikelihood
# Store marginal log P(U_3)
test_cost_last_utterance_marginal += marginal_last_utterance_loglikelihood
# Compute word-error rate for first utterances
miscl_first_utterances, miscl_first_utterances_list = eval_misclass_batch(x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic)
test_misclass_first_utterances += miscl_first_utterances
if numpy.isinf(c) or numpy.isnan(c):
continue
# Store misclassification for last utterance
miscl_first_utterances_list = miscl_first_utterances_list.reshape((batch['x'].shape[1],max_length), order=(1,0))
miscl_first_utterances_list = numpy.sum(miscl_first_utterances_list, axis=1)
miscl_last_utterance_list = miscl_list - miscl_first_utterances_list
test_misclass_last_utterance_list[(nxt-triples_in_batch):nxt] = miscl_last_utterance_list[0:triples_in_batch]
if model.bootstrap_from_semantic_information:
# Compute cross-entropy error on predicting the semantic class and retrieve predictions
sem_eval = eval_semantic_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic)
# Evaluate only non-empty triples (empty triples are created to fill
# the whole batch sometimes).
sem_cost = sem_eval[0][-1, :, :]
test_semantic_cost += numpy.sum(sem_cost[x_semantic_nonempty_indices])
# Compute misclassified predictions on last timestep over all labels
sem_preds = sem_eval[1][-1, :, :]
sem_preds_misclass = len(numpy.where(((x_semantic-0.5)*(sem_preds-0.5))[x_semantic_nonempty_indices] < 0)[0])
test_semantic_misclass += sem_preds_misclass
test_wordpreds_done += batch['num_preds']
test_wordpreds_done_last_utterance += batch['num_preds_at_utterance']
test_triples_done += batch['num_triples']
logger.debug("[TEST END]")
test_cost_last_utterance_marginal /= test_wordpreds_done_last_utterance
test_cost_last_utterance = (test_cost - test_cost_first_utterances) / test_wordpreds_done_last_utterance
test_cost /= test_wordpreds_done
test_cost_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance)
test_misclass_last_utterance = float(test_misclass - test_misclass_first_utterances) / float(test_wordpreds_done_last_utterance)
test_misclass_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance)
test_misclass /= float(test_wordpreds_done)
test_empirical_mutual_information /= float(test_triples_done)
if model.bootstrap_from_semantic_information:
test_semantic_cost /= float(test_triples_done)
test_semantic_misclass /= float(test_done_triples)
print "** test semantic cost = %.4f, test semantic misclass error = %.4f" % (float(test_semantic_cost), float(test_semantic_misclass))
print "** test cost (NLL) = %.4f, test word-perplexity = %.4f, test word-perplexity last utterance = %.4f, test word-perplexity marginal last utterance = %.4f, test mean word-error = %.4f, test mean word-error last utterance = %.4f, test emp. mutual information = %.4f" % (float(test_cost), float(math.exp(test_cost)), float(math.exp(test_cost_last_utterance)), float(math.exp(test_cost_last_utterance_marginal)), float(test_misclass), float(test_misclass_last_utterance), test_empirical_mutual_information)
if compute_genre_specific_metrics:
print '** test perplexity per genre', numpy.exp(test_cost_per_genre/test_wordpreds_done_per_genre)
print '** test_mi_per_genre', test_mi_per_genre
print '** words per genre', test_wordpreds_done_per_genre
# Plot histogram over test costs
if args.plot_graphs:
try:
pylab.figure()
bins = range(0, 50, 1)
pylab.hist(numpy.exp(test_cost_list), normed=1, histtype='bar')
pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_WordPerplexities.png')
except:
pass
# Print 5 of 10% test samples with highest log-likelihood
if args.plot_graphs:
print " highest word log-likelihood test samples: "
numpy.random.shuffle(test_lowest_triples)
for i in range(test_extrema_samples_to_print):
print " Sample: {}".format(" ".join(model.indices_to_words(numpy.ravel(test_lowest_triples[i,:]))))
print " lowest word log-likelihood test samples: "
numpy.random.shuffle(test_highest_triples)
for i in range(test_extrema_samples_to_print):
print " Sample: {}".format(" ".join(model.indices_to_words(numpy.ravel(test_highest_triples[i,:]))))
# Plot histogram over empirical pointwise mutual informations
if args.plot_graphs:
try:
pylab.figure()
bins = range(0, 100, 1)
pylab.hist(test_pmi_list, normed=1, histtype='bar')
pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_PMI.png')
except:
pass
# To estimate the standard deviations, we assume that triples across documents (movies) are independent.
# We compute the mean metric for each document, and then the variance between documents.
# We then use the between document variance to compute the:
# Let m be a metric:
# Var[m] = Var[1/(words in total) \sum_d \sum_i m_{di}]
# = Var[1/(words in total) \sum_d (words in doc d)/(words in doc d) \sum_i m_{di}]
# = \sum_d (words in doc d)^2/(words in total)^2 Var [ 1/(words in doc d) \sum_i ]
# = \sum_d (words in doc d)^2/(words in total)^2 sigma^2
#
# where sigma^2 is the variance computed for the means across documents.
# negative log-likelihood for each document (movie)
per_document_test_cost = numpy.zeros((len(unique_document_ids)), dtype='float32')
# negative log-likelihood for last utterance for each document (movie)
per_document_test_cost_last_utterance = numpy.zeros((len(unique_document_ids)), dtype='float32')
# misclassification error for each document (movie)
per_document_test_misclass = numpy.zeros((len(unique_document_ids)), dtype='float32')
# misclassification error for last utterance for each document (movie)
per_document_test_misclass_last_utterance = numpy.zeros((len(unique_document_ids)), dtype='float32')
# Compute standard deviations based on means across documents (sigma^2 above)
all_words_squared = 0 # \sum_d (words in doc d)^2
all_words_in_last_utterance_squared = 0 # \sum_d (words in last utterance of doc d)^2
for doc_id in range(len(unique_document_ids)):
doc_indices = numpy.where(document_ids == unique_document_ids[doc_id])
per_document_test_cost[doc_id] = numpy.sum(test_cost_list[doc_indices]) / numpy.sum(words_in_triples_list[doc_indices])
per_document_test_cost_last_utterance[doc_id] = numpy.sum(test_cost_last_utterance_marginal_list[doc_indices]) / numpy.sum(words_in_last_utterance_list[doc_indices])
per_document_test_misclass[doc_id] = numpy.sum(test_misclass_list[doc_indices]) / numpy.sum(words_in_triples_list[doc_indices])
per_document_test_misclass_last_utterance[doc_id] = numpy.sum(test_misclass_last_utterance_list[doc_indices]) / numpy.sum(words_in_last_utterance_list[doc_indices])
all_words_squared += float(numpy.sum(words_in_triples_list[doc_indices]))**2
all_words_in_last_utterance_squared += float(numpy.sum(words_in_last_utterance_list[doc_indices]))**2
# Sanity check that all documents are being used in the standard deviation calculations
assert(numpy.sum(words_in_triples_list) == test_wordpreds_done)
assert(numpy.sum(words_in_last_utterance_list) == test_wordpreds_done_last_utterance)
# Compute final standard deviation equation and print the standard deviations
per_document_test_cost_variance = numpy.var(per_document_test_cost) * float(all_words_squared) / float(test_wordpreds_done**2)
per_document_test_cost_last_utterance_variance = numpy.var(per_document_test_cost_last_utterance) * float(all_words_in_last_utterance_squared) / float(test_wordpreds_done_last_utterance**2)
per_document_test_misclass_variance = numpy.var(per_document_test_misclass) * float(all_words_squared) / float(test_wordpreds_done**2)
per_document_test_misclass_last_utterance_variance = numpy.var(per_document_test_misclass_last_utterance) * float(all_words_in_last_utterance_squared) / float(test_wordpreds_done_last_utterance**2)
print 'Standard deviations:'
print "** test cost (NLL) = ", math.sqrt(per_document_test_cost_variance)
print "** test perplexity (NLL) = ", math.sqrt((math.exp(per_document_test_cost_variance) - 1)*math.exp(2*test_cost+per_document_test_cost_variance))
print "** test cost last utterance (NLL) = ", math.sqrt(per_document_test_cost_last_utterance_variance)
print "** test perplexity last utterance (NLL) = ", math.sqrt((math.exp(per_document_test_cost_last_utterance_variance) - 1)*math.exp(2*test_cost+per_document_test_cost_last_utterance_variance))
print "** test word-error = ", math.sqrt(per_document_test_misclass_variance)
print "** test last utterance word-error = ", math.sqrt(per_document_test_misclass_last_utterance_variance)
logger.debug("All done, exiting...")
if __name__ == "__main__":
main()