Skip to content

Latest commit

 

History

History
496 lines (411 loc) · 12.8 KB

README.md

File metadata and controls

496 lines (411 loc) · 12.8 KB

pitaya-finch

REST API service for some Natural Language Processing NLP tasks. This service uses internally Apache Open NLP and provides an HTTP bridge (REST API) to use NLP stuff.

Pitaya service runs over Finch which allows you to create composable HTTP services definitions in a functional programming way making them elegant.

Finch endpoints are deployed on Finagle which already provides a super performance. In short: We want to build tiny, elegant and efficient NLP services.

Contents

  1. How to run
  2. How to run in Docker
  3. How to test
  4. API definition

How to run in local

This project uses Twitter-Server to wrap the entire service and provide useful tools for monitoring. When runing the project you can admin your service through: http://<domain>:9990

$ sbt compile
$ sbt run

How to run in Docker

Docker image is created with SBT Native Packager.

You just need to run:

$ sbt docker:publishLocal
>
[info] Successfully tagged pitaya-finch:0.1.0
[info] Built image pitaya-finch with tags [0.1.0]

Then verify the image was created:

$ docker image ls
>
REPOSITORY          TAG                 IMAGE ID            CREATED             SIZE
pitaya-finch        0.1.0               a17a221ee435        2 minutes ago       130MB
<none>              <none>              22c83e7018ca        2 minutes ago       177MB
openjdk             jre-alpine          ccfb0c83b2fe        14 months ago       83MB

Run the Docker container:

$ docker run --rm -p 80:8080 90:9990 pitaya-finch:0.1.0
>
[2019/09/19 21:27:11.622 GMT - main] INFO com.twitter.util.logging.Slf4jBridgeUtility$.info - org.slf4j.bridge.SLF4JBridgeHandler installed.
[2019/09/19 21:27:12.701 GMT - main] INFO com.twitter.finagle.http.HttpMuxer$.$anonfun$new$1 - HttpMuxer[/admin/metrics.json] = com.twitter.finagle.stats.MetricsExporter(com.twitter.finagle.stats.MetricsExporter)
[2019/09/19 21:27:12.703 GMT - main] INFO com.twitter.finagle.http.HttpMuxer$.$anonfun$new$1 - HttpMuxer[/admin/per_host_metrics.json] = com.twitter.finagle.stats.HostMetricsExporter(com.twitter.finagle.stats.HostMetricsExporter)
[2019/09/19 21:27:13.275 GMT - main] INFO org.juanitodread.pitayafinch.App$.startServer - Serving admin http on 0.0.0.0/0.0.0.0:9990
[2019/09/19 21:27:14.169 GMT - main] INFO com.twitter.finagle.$anonfun$once$1 - Finagle version 19.2.0 (rev=7576e54f801ef5b74dc86ca50b365fbe0de780d9) built at 20190221-122249
[2019/09/19 21:27:14.453 GMT - main] INFO org.juanitodread.pitayafinch.App$.info - Service starting at http://127.0.0.1:8080/pitaya 
  • The API will be listening at port: 80
  • The admin console will be listening at port: 90

Stats console

Requests metric

How to test

To run all the test suite

$ sbt test

To run a specific test case

$ sbt testOnly *<class-spec-name>

API definition

General

Current version

The current version of this API is v1.

Schema

All data is sent and received as JSON.

Root endpoint

The root endpoint is: http://<host>:<port>/pitaya/api/v1/

NLP

Token processing

Tokenizer

Get token algorithms

Returns a list of supported tokenizer algorithms.

GET /nlp/tokenizer
Parameters

N/A

Response
Status: 200 OK
[
    "SIMPLE",
    "WHITESPACE",
    "MAX_ENTROPY"
]
Tokenize text

Returns a list of tokens of the provided text using the specified algorithm.

POST /nlp/tokenizer
Parameters (Body)
Name Type Description
text string The text to be split in tokens.
algorithm enum The tokenizer algorithm to be used. Values: SIMPLE, WHITESPACE, MAX_ENTROPY
Response
Status: 200 OK
{
    "text": "Thi's is a sample.",
    "algorithm": "WHITESPACE",
    "tokens": [
        "Thi's",
        "is",
        "a",
        "sample."
    ]
}

Normalizer

Lowercase converter

Returns a list of tokens in lower case format.

POST /nlp/normalizer/lowercase
Parameters (Body)
Name Type Description
tokens array[String] The list of tokens to be lower cased.
Response
Status: 200 OK
{
    "tokens": [
        "ThIs",
        "requires",
        "TO",
        "BE",
        "lOwErCasED"
    ],
    "result": [
        "this",
        "requires",
        "to",
        "be",
        "lowercased"
    ]
}
Stopwords remover

Returns a list of tokens without stopwords. Stopwords works for English.

POST /nlp/normalizer/stopwords
Parameters (Body)
Name Type Description
tokens array[String] The list of tokens to remove stopwords.
Response
Status: 200 OK
{
    "tokens": [
        "this",
        "requires",
        "to",
        "be",
        "lowercased"
    ],
    "result": [
        "requires",
        "lowercased"
    ]
}
Stemmer

Returns a list of pairs with the word and their respective Stem. Stemmer works for English.

POST /nlp/normalizer/stem
Parameters (Body)
Name Type Description
tokens array[String] The list of tokens to get their stem.
Response
Status: 200 OK
{
    "tokens": [
        "banking",
        "bank",
        "banked",
        "became",
        "become"
    ],
    "result": [
        {"orginal": "banking", "stem": "bank"},
        {"orginal": "bank", "stem": "bank"},
        {"orginal": "banked", "stem": "bank"},
        {"orginal": "became", "stem": "becom"},
        {"orginal": "become", "stem": "becom"}
    ]
}
Lemmatizer

Returns a list of pairs with the word and their respective Lemmas. Lemmatizer works for English.

POST /nlp/normalizer/lemma
Parameters (Body)
Name Type Description
tokens array[String] The list of tokens to get their lemmas.
Response
Status: 200 OK
{
    "tokens": [
        "bob",
        "hello"
    ],
    "result": [
        {
            "original": "bob",
            "lemmas": [
                {"tag": "NNS", "description": "Noun, plural"},
                {"tag": "NN", "description": "Noun, singular or mass"},
                {"tag": "VB", "description": "Verb, base form"},
                {"tag": "VBP", "description": "Verb, non-3rd person singular present"}
            ]
        },
        {
            "original": "hello",
            "lemmas": [
                {"tag": "NN", "description": "Noun, singular or mass"}
            ]
        }
    ]
}

Pipeline: Token processing pipeline

Process the provided text using the specified algorithms in the sequence defined by the Pipeline object.

A Pipeline object has three main components or steps:

  • init: Is the first stage of the Pipeline. The type of this stage is String => List[String]. We only support Tokenizer algorithm for init stage.
  • stages: Is a list of stage (algorithms) which will be applied to the result of the previous stage. The type of this stage is List[String] => List[String].
  • finalizer: Is the last stage of the Pipeline. The type of this stage is List[String] => Result.
Stage Algorithms Description
init TOKENIZER The text to be split in tokens.
stage LOWERCASE, STOPWORDS Tokens to be processed and the result is a list of tokens.
finalizer STEMMER, LEMMATIZER The list of tokens to be processed by a final stage which produces a Result.
POST /nlp/pipeline
Parameters (Body)
Name Type Description
text string The text to be split in tokens.
pipeline object The pipeline definition.
pipeline.init object The first stage of the pipeline processing.
pipeline.stages array[object] A list of stage objects.
pipeline.finalizer object The last stage of the pipeline processing. This stage must return a result.
Example
{
    "text": "Hello World",
    "pipeline": {
        "init": { "algorithm": "TOKENIZER", "strategy": "MAX_ENTROPY" },
        "stages": [
            { "algorithm": "LOWERCASE" },
            { "algorithm": "STOPWORDS" }
        ],
        "finalizer": { "algorithm": "STEMMER" }
    }
}
Response
Status: 200 OK
{
    "pipeline": "Tokenizer -> LowerCaseConverter -> StopWordsRemover -> Stemmer",
    "stemmerResult": [
        {
            "original": "hello",
            "stem": "hello"
        },
        {
            "original": "world",
            "stem": "world"
        }
    ]
}

Note: If the finalizer is LEMMATIZER algorithm, the Result property will be lemmaResult

Sentence Detector

Find sentences

Returns a list of sentences according to the given text (paragraph).

POST /nlp/sentences/find
Parameters (Body)
Name Type Description
text string The text to be split into sentences.
Response
Status: 200 OK
{
    "text": "Thi's is a sample. This is another one. Hi",
    "sentences": [
        { "sentence": "Thi's is a sample.", "confidence": 1.0 },
        { "sentence": "This is another one.", "confidence": 0.994 },
        { "sentence": "Hi", "confidence": 1.0 }
    ]
}

Entity Recognition

Entities

Returns a list of entities found in the given text (sentence). The algorithm supports the following entity types:

  • Dates
  • Times
  • Locations
  • Persons
  • Organizations
  • Money
  • Percentages

all of them are used in the process.

POST /nlp/entities
Parameters (Body)
Name Type Description
text string The text to be analyzed in order to detect entities.
Response
Status: 200 OK
{
    "text": "He appointed Julian Casablancas or John Doe",
    "entities": [
        { "entity": "Julian Casablancas", "model": "Person", "confidence": 0.949 },
        { "entity": "John Doe", "model": "Person", "confidence": 0.913 }
    ]
}

POS Tagger

tags

Returns a list of Tag objects with the tag information of the given sentence. A Tag object contains the token (word), the tag and the description of the tag.

POST /nlp/pos/tags
Parameters (Body)
Name Type Description
text string The text to be analyzed in order to tag words.
chunk boolean true if you want to get the chunks of the sentence, false otherwise.
Response
Status: 200 OK
{
    "text": "His election and policies have sparked numerous protests",
    "result": {
        "tags": [
            { "token": "His", "tag": "PRP$", "description": "Possessive pronoun" },
            { "token": "election", "tag": "NN", "description": "Noun, singular or mass" },
            { "token": "and", "tag": "CC", "description": "Coordinating conjunction" },
            { "token": "policies", "tag": "NNS", "description": "Noun, plural" },
            { "token": "have", "tag": "VBP", "description": "Verb, non-3rd person singular present" },
            { "token": "sparked", "tag": "VBN", "description": "Verb, past participle" },
            { "token": "numerous", "tag": "JJ", "description": "Adjective" },
            { "token": "protests", "tag": "NNS", "description": "Noun, plural" }
        ],
        "chunks": [
            { "chunk": "His election and policies", "group": "NP" },
            { "chunk": "have sparked", "group": "VP" },
            { "chunk": "numerous protests", "group": "NP" }
        ]
    }
}